Patents by Inventor Yan E. Wang

Yan E. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335949
    Abstract: Provided is a lithium-conductive solid-state electrolyte material that comprises a sulfide compound of a composition that does not deviate substantially from a formula of Li9S3N. The compound's conductivity is greater than about 1×10?7 S/cm at about 25° C. and is in contact with a negative electroactive material. Also provided is an electrochemical cell that includes an anode layer, a cathode layer, and the electrolyte layer between the anode and cathode layers. In an example, the material's activation energy can be no greater than about 0.52 eV at about 25° C.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: May 17, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Lincoln J. Miara, Naoki Suzuki, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Publication number: 20200144662
    Abstract: Provided is a lithium-conductive solid-state electrolyte material that comprises a sulfide compound of a composition that does not deviate substantially from a formula of Li9S3N. The compound's conductivity is greater than about 1×10?7 S/cm at about 25° C. and is in contact with a negative electroactive material. Also provided is an electrochemical cell that includes an anode layer, a cathode layer, and the electrolyte layer between the anode and cathode layers. In an example, the material's activation energy can be no greater than about 0.52 eV at about 25° C.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Lincoln J. Miara, Naoki Suzuki, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Patent number: 10566653
    Abstract: Provided is a lithium-conductive solid-state electrolyte material that comprises a sulfide compound of a composition that does not deviate substantially from a formula of Li9S3N. The compound's conductivity is greater than about 1×10?7 S/cm at about 25° C. and is in contact with a negative electroactive material. Also provided is an electrochemical cell that includes an anode layer, a cathode layer, and the electrolyte layer between the anode and cathode layers. In an example, the material's activation energy can be no greater than about 0.52 eV at about 25° C.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 18, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Lincoln J. Miara, Naoki Suzuki, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Patent number: 10324138
    Abstract: Embodiments of a method, a system, and non-transitory computer readable storage media evaluating electrochemical qualities for interphase products. The disclosed embodiments perform a selection of a plurality of chemical phases for a solid electrolyte and at least one of the anode and cathode to be received. Thermodynamic data is received for the plurality of chemical phases. The retrieved thermodynamic data is received to evaluate a respective electrochemical quality for at least one of an interface between the solid electrolyte and the anode, and an interface between the solid electrolyte and the cathode.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: June 18, 2019
    Assignee: MASSACHUSETTES INSTITUTE OF TECHNOLOGY
    Inventors: William D. Richards, Lincoln J. Miara, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Patent number: 10177406
    Abstract: Solid electrolyte materials as well as their applications and methods of manufacture are disclosed. In one embodiment, a solid electrolyte material has a formula of A3+?Cl1??B?O, where ? is greater than 0. In the above formula, A is at least one of Li and Na, and B is at least one of S, Se, and N. In another embodiment, a solid electrolyte material is a crystal structure having the general formula A3XO, where A is at least one of Li and Na. Additionally, X is Cl, at least a portion of which is substituted with at least one of S, Se, and N. The solid electrolyte material also includes interstitial lithium ions and/or interstitial sodium ions located in the crystal structure.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: January 8, 2019
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Lincoln J. Miara, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Publication number: 20170139013
    Abstract: Embodiments of a method, a system, and non-transitory computer readable storage media evaluating electrochemical qualities for interphase products. The disclosed embodiments perform a selection of a plurality of chemical phases for a solid electrolyte and at least one of the anode and cathode to be received. Thermodynamic data is received for the plurality of chemical phases. The retrieved thermodynamic data is received to evaluate a respective electrochemical quality for at least one of an interface between the solid electrolyte and the anode, and an interface between the solid electrolyte and the cathode.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 18, 2017
    Inventors: William D. Richards, Lincoln J. Wang, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Publication number: 20170047610
    Abstract: Provided is a lithium-conductive solid-state electrolyte material that comprises a sulfide compound of a composition that does not deviate substantially from a formula of Li9S3N. The compound's conductivity is greater than about 1×10?7 S/cm at about 25° C. and is in contact with a negative electroactive material. Also provided is an electrochemical cell that includes an anode layer, a cathode layer, and the electrolyte layer between the anode and cathode layers. In an example, the material's activation energy can be no greater than about 0.52 eV at about 25° C.
    Type: Application
    Filed: April 29, 2016
    Publication date: February 16, 2017
    Inventors: Lincoln J. Miara, Naoki Suzuki, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder
  • Publication number: 20170025705
    Abstract: Solid electrolyte materials as well as their applications and methods of manufacture are disclosed. In one embodiment, a solid electrolyte material has a formula of A3+?Cl1??B?O, where ? is greater than 0. In the above formula, A is at least one of Li and Na, and B is at least one of S, Se, and N. In another embodiment, a solid electrolyte material is a crystal structure having the general formula A3XO, where A is at least one of Li and Na. Additionally, X is Cl, at least a portion of which is substituted with at least one of S, Se, and N. The solid electrolyte material also includes interstitial lithium ions and/or interstitial sodium ions located in the crystal structure.
    Type: Application
    Filed: May 16, 2016
    Publication date: January 26, 2017
    Inventors: Lincoln J. Miara, William D. Richards, Yan E. Wang, Jae Chul Kim, Gerbrand Ceder