Patents by Inventor Yan-Jie Liao

Yan-Jie Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210383972
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a dielectric structure sandwiched between a first electrode and a bottom electrode. A passivation layer overlies the second electrode and the dielectric structure. The passivation layer comprises a horizontal surface vertically below a top surface of the passivation layer. The horizontal surface is disposed above a top surface of the dielectric structure.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11107630
    Abstract: Various embodiments of the present disclosure are directed towards a piezoelectric metal-insulator-metal (MIM) device including a piezoelectric structure between a top electrode and a bottom electrode. The piezoelectric layer includes a top region overlying a bottom region. Outer sidewalls of the bottom region extend past outer sidewalls of the top region. The outer sidewalls of the top region are aligned with outer sidewalls of the top electrode. The piezoelectric layer is configured to help limit delamination of the top electrode from the piezoelectric layer.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Publication number: 20210043680
    Abstract: In some embodiments, the present disclosure relates to a method for recovering degraded device performance of a piezoelectric device. The method includes operating the piezoelectric device in a performance mode by applying one or more voltage pulses to the piezoelectric device, and determining that a performance parameter of the piezoelectric device has a first value that has deviated from a reference value by more than a predetermined threshold value during a first time period. During a second time period, the method further includes applying a bipolar loop to the piezoelectric device, comprising positive and negative voltage biases. During a third time period, the method further includes operating the piezoelectric device in the performance mode, wherein the performance parameter has a second value. An absolute difference between the second value and the reference value is less than an absolute difference between the first value and the reference value.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Chi-Yuan Shih, Shih-Fen Huang, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20210043721
    Abstract: In some embodiments, the present disclosure relates to a metal-insulator-metal (MIM) device. The MIM device includes a substrate, and a first and second electrode stacked over the substrate. A dielectric layer is arranged between the first and second electrodes. Further, the MIM device includes a titanium getter layer that is disposed over the substrate and separated from the dielectric layer by the first electrode. The titanium getter layer has a higher getter capacity for hydrogen than the dielectric layer.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 11, 2021
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yan-Jie Liao
  • Publication number: 20200098969
    Abstract: In some embodiments, a piezoelectric device is provided. The piezoelectric device includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A heating element is disposed over the semiconductor substrate. The heating element is configured to heat the piezoelectric structure to a recovery temperature for a period of time, where heating the piezoelectric structure to the recovery temperature for the period of time improves a degraded electrical property of the piezoelectric device.
    Type: Application
    Filed: May 16, 2019
    Publication date: March 26, 2020
    Inventors: Alexander Kalnitsky, Chun-Ren Cheng, Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20200098517
    Abstract: Various embodiments of the present disclosure are directed towards a piezoelectric metal-insulator-metal (MIM) device including a piezoelectric structure between a top electrode and a bottom electrode. The piezoelectric layer includes a top region overlying a bottom region. Outer sidewalls of the bottom region extend past outer sidewalls of the top region. The outer sidewalls of the top region are aligned with outer sidewalls of the top electrode. The piezoelectric layer is configured to help limit delamination of the top electrode from the piezoelectric layer.
    Type: Application
    Filed: May 21, 2019
    Publication date: March 26, 2020
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Publication number: 20200006469
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor having a top electrode overlying a substrate. A passivation layer overlies the top electrode. The passivation layer has a step region that continuously contacts and extends from a top surface of the top electrode to sidewalls of the top electrode. A metal frame overlies the passivation layer. The metal frame continuously contacts and extends from a top surface of the passivation layer to upper sidewalls of the passivation layer in the step region. The metal frame has a protrusion that extends through the passivation layer and contacts the top surface of the top electrode.
    Type: Application
    Filed: May 13, 2019
    Publication date: January 2, 2020
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Wen-Chuan Tai, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Anderson Lin, Fu-Chun Huang, Chun-Ren Cheng, Ivan Hua-Shu Wu, Fan Hu, Ching-Hui Lin, Yan-Jie Liao