Patents by Inventor Yan ZUO

Yan ZUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961244
    Abstract: Disclosed is a high-precision dynamic real-time 360-degree omnidirectional point cloud acquisition method based on fringe projection. The method comprises: firstly, by means of the fringe projection technology based on a stereoscopic phase unwrapping method, and with the assistance of an adaptive dynamic depth constraint mechanism, acquiring high-precision three-dimensional (3D) data of an object in real time without any additional auxiliary fringe pattern; and then, after a two-dimensional (2D) matching points optimized by the means of corresponding 3D information is rapidly acquired, by means of a two-thread parallel mechanism, carrying out coarse registration based on Simultaneous Localization and Mapping (SLAM) technology and fine registration based on Iterative Closest Point (ICP) technology.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: April 16, 2024
    Assignee: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chao Zuo, Jiaming Qian, Qian Chen, Shijie Feng, Tianyang Tao, Yan Hu, Wei Yin, Liang Zhang, Kai Liu, Shuaijie Wu, Mingzhu Xu, Jiaye Wang
  • Patent number: 11948920
    Abstract: Provided are a semiconductor device and a method for manufacturing the same, and a semiconductor package. The semiconductor device includes a die stack and a cap substrate. The die stack includes a first die, second dies stacked on the first die, and a third die stacked on the second dies. The first die includes first through semiconductor vias. Each of the second dies include second through semiconductor vias. The third die includes third through semiconductor vias. The cap substrate is disposed on the third die of the die stack. A sum of a thickness of the third die and a thickness of the cap substrate ranges from about 50 ?m to about 80 ?m.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Chun Hsu, Yan-Zuo Tsai, Chia-Yin Chen, Yang-Chih Hsueh, Yung-Chi Lin, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Publication number: 20240103319
    Abstract: The invention refers to a diffusion plate and a backlight module having the diffusion plate. The diffusion plate comprises a plate-body and a plurality of pyramid-like structures arranged on a surface of the plate-body. Each pyramid-like structure has a bottom surface, a first convex portion and a second convex portion. The first convex portion and the second convex portion have different vertex angles, and therefore the pyramid-like structure can also be called as “pyramid-like structure with multiple vertex angles”. The pyramid-like structures with multiple vertex angles can increase the light splitting points, which can improve the light splitting effect of the diffusion plate. The light source of a single light-emitting diode can be divided into eight point-light sources (light splitting points) or more, which is double the number of light splitting points compared with the traditional pyramid structure with single vertex, and thus can greatly improve the light diffusion effect.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Applicant: Entire Technology Co., Ltd.
    Inventors: Yan-Zuo Chen, Hung Han Kao, Tsung-Chang Yang
  • Patent number: 11860476
    Abstract: The invention refers to a diffusion plate and a backlight module having the diffusion plate. The diffusion plate comprises a plate-body and a plurality of pyramid-like structures arranged on a surface of the plate-body. Each pyramid-like structure has a bottom surface, a first convex portion and a second convex portion. The first convex portion and the second convex portion have different vertex angles, and therefore the pyramid-like structure can also be called as “pyramid-like structure with multiple vertex angles”. The pyramid-like structures with multiple vertex angles can increase the light splitting points, which can improve the light splitting effect of the diffusion plate. The light source of a single light-emitting diode can be divided into eight point-light sources (light splitting points) or more, which is double the number of light splitting points compared with the traditional pyramid structure with single vertex, and thus can greatly improve the light diffusion effect.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: January 2, 2024
    Assignee: Entire Technology Co., Ltd.
    Inventors: Yan-Zuo Chen, Hung Han Kao, Tsung-Chang Yang
  • Publication number: 20230104462
    Abstract: The invention refers to a diffusion plate and a backlight module having the diffusion plate. The diffusion plate comprises a plate-body and a plurality of pyramid-like structures arranged on a surface of the plate-body. Each pyramid-like structure has a bottom surface, a first convex portion and a second convex portion. The first convex portion and the second convex portion have different vertex angles, and therefore the pyramid-like structure can also be called as “pyramid-like structure with multiple vertex angles”. The pyramid-like structures with multiple vertex angles can increase the light splitting points, which can improve the light splitting effect of the diffusion plate. The light source of a single light-emitting diode can be divided into eight point-light sources (light splitting points) or more, which is double the number of light splitting points compared with the traditional pyramid structure with single vertex, and thus can greatly improve the light diffusion effect.
    Type: Application
    Filed: December 7, 2022
    Publication date: April 6, 2023
    Applicant: Entire Technology Co., Ltd.
    Inventors: Yan-Zuo Chen, Hung Han Kao, Tsung-Chang Yang
  • Publication number: 20230063851
    Abstract: Provided are a semiconductor device and a method for manufacturing the same, and a semiconductor package. The semiconductor device includes a die stack and a cap substrate. The die stack includes a first die, second dies stacked on the first die, and a third die stacked on the second dies. The first die includes first through semiconductor vias. Each of the second dies include second through semiconductor vias. The third die includes third through semiconductor vias. The cap substrate is disposed on the third die of the die stack. A sum of a thickness of the third die and a thickness of the cap substrate ranges from about 50 ?m to about 80 ?m.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Chun Hsu, Yan-Zuo Tsai, Chia-Yin Chen, Yang-Chih Hsueh, Yung-Chi Lin, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Patent number: 11556032
    Abstract: The invention refers to a diffusion plate and a backlight module having the diffusion plate. The diffusion plate comprises a plate-body and a plurality of pyramid-like structures arranged on a surface of the plate-body. Each pyramid-like structure has a bottom surface, a first convex portion and a second convex portion. The first convex portion and the second convex portion have different vertex angles, and therefore the pyramid-like structure can also be called as “pyramid-like structure with multiple vertex angles”. The pyramid-like structures with multiple vertex angles can increase the light splitting points, which can improve the light splitting effect of the diffusion plate. The light source of a single light-emitting diode can be divided into eight point-light sources (light splitting points) or more, which is double the number of light splitting points compared with the traditional pyramid structure with single vertex, and thus can greatly improve the light diffusion effect.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: January 17, 2023
    Inventors: Yan-Zuo Chen, Hung Han Kao, Tsung-Chang Yang
  • Publication number: 20220179264
    Abstract: The invention refers to a diffusion plate and a backlight module having the diffusion plate. The diffusion plate comprises a plate-body and a plurality of pyramid-like structures arranged on a surface of the plate-body. Each pyramid-like structure has a bottom surface, a first convex portion and a second convex portion. The first convex portion and the second convex portion have different vertex angles, and therefore the pyramid-like structure can also be called as “pyramid-like structure with multiple vertex angles”. The pyramid-like structures with multiple vertex angles can increase the light splitting points, which can improve the light splitting effect of the diffusion plate. The light source of a single light-emitting diode can be divided into eight point-light sources (light splitting points) or more, which is double the number of light splitting points compared with the traditional pyramid structure with single vertex, and thus can greatly improve the light diffusion effect.
    Type: Application
    Filed: October 26, 2021
    Publication date: June 9, 2022
    Applicant: Entire Technology Co., Ltd.
    Inventors: Yan-Zuo Chen, Hung Han Kao, Tsung-Chang Yang
  • Publication number: 20210011200
    Abstract: A method for dyeing a functional contact lens includes steps of: providing a lens body; formulating a first solution, wherein the first solution is an ionic salt solution containing an alkali; placing the lens body in the first solution and reacting at 30° C. to 80° C.; formulating a second solution, wherein the second solution is an ionic salt solution containing at least one reactive dye; and placing the lens body in the second solution and reacting at 30° C. to 80° C.; wherein the at least one reactive dye reacts with the lens body to be fixed to a surface portion of the lens body. In order to achieve one or a portion or all of the above or other objects, the present invention further provides a functional contact lens including a lens body and a dye layer on a surface of the lens body and can be obtained by the aforementioned method.
    Type: Application
    Filed: October 25, 2019
    Publication date: January 14, 2021
    Inventors: Wen-Ching LIN, Ching-Fang LEE, Chi-Ching CHEN, Yan-Zuo LIN
  • Patent number: 10867831
    Abstract: A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Zuo Tsai, Yang-Chih Hsueh, Chia-Yin Chen, Fu-Kang Tien, Ebin Liao, Wen-Chih Chiou
  • Publication number: 20200373185
    Abstract: A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Inventors: Yan-Zuo Tsai, Yang-Chih Hsueh, Chia-Yin Chen, Fu-Kang Tien, Ebin Liao, Wen-Chih Chiou
  • Patent number: 10748803
    Abstract: A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Zuo Tsai, Yang-Chih Hsueh, Chia-Yin Chen, Fu-Kang Tien, Ebin Liao, Wen-Chih Chiou
  • Publication number: 20190244851
    Abstract: A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Yan-Zuo Tsai, Yang-Chih Hsueh, Chia-Yin Chen, Fu-Kang Tien, Ebin Liao, Wen-Chih Chiou
  • Patent number: 10375769
    Abstract: Provided is a windshield for a high-speed locomotive and preparation method thereof. The windshield comprises an anti-reflection film layer; a first chemical tempering glass layer coated with the anti-reflection film layer on a first side thereof; at least one second chemical tempering glass layer located on a second side of the first chemical tempering glass layer; the second chemical tempering glass layer being bonded together with the first chemical tempering glass layer via a layer of an adhesive film, and adjacent second chemical tempering glass layers also being bonded together via a layer of the adhesive film; an anti-splash film layer, located on an outer side of the outermost second chemical tempering glass layer and bonded together with the outermost second chemical tempering glass layer via a layer of the adhesive film; and a first electric heating element disposed inside the adhesive film layer in contact with the first chemical tempering glass layer.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: August 6, 2019
    Assignees: CHINA BUILDING MATERIALS ACADEMY, BEIJING HANG BO NEW MATERIAL TECHNOLOGY CO., LTD
    Inventors: Yuanchun Mu, Dayan Du, Baojun Zhang, Zhiwei Xu, Yan Zuo, Jing Fu, Chaoying Liu, Fan Zhang, Wei Chen, Yang Zhang, Yanfang Zhang, Yuan An
  • Patent number: 10269611
    Abstract: A method and apparatus for bonding semiconductor devices are disclosed. In an embodiment, the method may include attaching a first die to a flip head of a flip module, flipping the first die with the flip module, removing the first die from the flip module after flipping the first die, inspecting the flip head of the flip module for contamination after removing the first die, cleaning the flip head with an in situ cleaning module after inspecting the flip head, and attaching a second die to the flip head after cleaning the flip head.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Zuo Tsai, Yang-Chih Hsueh, Chia-Yin Chen, Fu-Kang Tien, Ebin Liao, Wen-Chih Chiou
  • Patent number: 10094964
    Abstract: A direct back-lit light guide structure is applied to a light guide plate and a back-lit module. The light guide plate has a light-ejection surface and a light-inject surface opposite to the light-ejection surface. The back-lit module comprises at least one point-light source located on the light-ejection surface. The direct back-lit light guide structure comprises at least one asymmetric concave structure formed on the light-ejection surface, and each the point-light source is corresponding to one asymmetric concave structure in such a manner that the point-light source projects light directly toward the asymmetric concave structure. Each the asymmetric concave structure has a central lowest point. The point-light source is located right below the central lowest point. The direct back-lit light guide structure has advantages of better optical uniformity, higher illumination efficiency, fewer point-light sources required, lower cost, narrower side-frame and thinner light guide plate.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 9, 2018
    Assignee: Entire Technology Co., Ltd.
    Inventors: Yan Zuo Chen, Wei-Chen Lin
  • Publication number: 20160249414
    Abstract: Provided is a windshield for a high-speed locomotive and preparation method thereof. The windshield comprises an anti-reflection film layer; a first chemical tempering glass layer coated with the anti-reflection film layer on a first side thereof; at least one second chemical tempering glass layer located on a second side of the first chemical tempering glass layer; the second chemical tempering glass layer being bonded together with the first chemical tempering glass layer via a layer of an adhesive film, and adjacent second chemical tempering glass layers also being bonded together via a layer of the adhesive film; an anti-splash film layer, located on an outer side of the outermost second chemical tempering glass layer and bonded together with the outermost second chemical tempering glass layer via a layer of the adhesive film; and a first electric heating element disposed inside the adhesive film layer in contact with the first chemical tempering glass layer.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 25, 2016
    Applicants: BEIJING HANG BO NEW MATERIAL TECHNOLOGY CO., LTD, CHINA BUILDING MATERIALS ACADEMY
    Inventors: Yuanchun MU, Dayan DU, Baojun ZHANG, Zhiwei XU, Yan ZUO, Jing FU, Chaoying LIU, Fan ZHANG, Wei CHEN, Yang ZHANG, Yanfang ZHANG, Yuan AN
  • Publication number: 20160195667
    Abstract: A direct back-lit light guide structure is applied to a light guide plate and a back-lit module. The light guide plate has a light-ejection surface and a light-inject surface opposite to the light-ejection surface. The back-lit module comprises at least one point-light source located on the light-ejection surface. The direct back-lit light guide structure comprises at least one asymmetric concave structure formed on the light-ejection surface, and each the point-light source is corresponding to one asymmetric concave structure in such a manner that the point-light source projects light directly toward the asymmetric concave structure. Each the asymmetric concave structure has a central lowest point. The point-light source is located right below the central lowest point. The direct back-lit light guide structure has advantages of better optical uniformity, higher illumination efficiency, fewer point-light sources required, lower cost, narrower side-frame and thinner light guide plate.
    Type: Application
    Filed: December 28, 2015
    Publication date: July 7, 2016
    Applicant: Entire Technology Co., Ltd.
    Inventors: Yan Zuo Chen, Wei-Chen Lin
  • Patent number: 8899815
    Abstract: A uniform reflective light-guide for accompanying an edge light source to form a backlight module for an LCD display includes a light-guiding layer and a reflective layer. The light-guiding layer further defines a light-introducing surface and a light-exiting surface. The light-introducing surface is to allow lights emitted from the edge light source to enter the light-guiding layer. The light-exiting surface perpendicular to the light-introducing surface is to allow at least a portion of the lights to leave the light-guiding layer. The reflective layer is to reflect the incident lights back to the light-guiding layer. The reflective layer and the light-guiding layer are manufactured integrally into a unique piece by a co-extrusion process so as to avoid possible existence of an air spacing in between. A reflective surface is defined to interface the reflective layer and the light-guiding layer, and a three-dimensional micro-structure is constructed on the reflective surface.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 2, 2014
    Assignee: Entire Technology Co., Ltd.
    Inventors: Jia-Jen Chen, Yu-Chun Tao, Yan Zuo Chen, Hao-Xiang Lin, Cheng-Yu Hsieh
  • Patent number: 8851735
    Abstract: A uniform reflective light-guide apparatus can accompany an optional edge light source and includes a light-guiding layer, a reflective layer and a light-exiting surface. The light-guiding layer further has a lateral side to define a light-introducing surface for allowing entrance of lights from the edge light source. The reflective layer is to reflect incident lights back to the light-guiding layer. The light-exiting surface perpendicular to the light-introducing surface is to allow at least a portion of the lights in the light-guiding layer to leave the light-guide apparatus. The reflective layer and the light-guiding layer are manufactured integrally by a co-extrusion process so as to avoid possible existence of an air spacing between the reflective layer and the light-guiding layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 7, 2014
    Assignee: Entire Technology Co. Ltd
    Inventors: Jia-Jen Chen, Yu-Chun Tao, Yan Zuo Chen, Hao-Xiang Lin, Cheng-Yu Hsieh