Patents by Inventor Yanbo Xue

Yanbo Xue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230385668
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 30, 2023
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11704586
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: July 18, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20220335320
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 9, 2022
    Publication date: October 20, 2022
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11386346
    Abstract: Techniques are provided for computing problems represented as directed graphical models via quantum processors with topologies and coupling physics which correspond to undirected graphs. These include techniques for generating approximations of Bayesian networks via a quantum processor capable of computing problems based on a Markov network-based representation of such problems. Approximations may be generated by moralization of Bayesian networks to Markov networks, learning of Bayesian networks' probability distributions by Markov networks' probability distributions, or otherwise, and are trained by executing the resulting Markov network on the quantum processor.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 12, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Yanbo Xue, William G. Macready
  • Patent number: 11348026
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 31, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20200167685
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 10599988
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: March 24, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T.R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20200019879
    Abstract: Techniques are provided for computing problems represented as directed graphical models via quantum processors with topologies and coupling physics which correspond to undirected graphs. These include techniques for generating approximations of Bayesian networks via a quantum processor capable of computing problems based on a Markov network-based representation of such problems. Approximations may be generated by moralization of Bayesian networks to Markov networks, learning of Bayesian networks' probability distributions by Markov networks' probability distributions, or otherwise, and are trained by executing the resulting Markov network on the quantum processor.
    Type: Application
    Filed: March 19, 2019
    Publication date: January 16, 2020
    Inventors: Yanbo Xue, William G. Macready
  • Publication number: 20170255629
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 7, 2017
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Tomas J. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20110084871
    Abstract: Methods and systems relating to a cognitive tracking radar system. A radar system determines an immediately preceding state of a target being tracked. Based on this immediately preceding state, the system determines parameters and waveforms which may be used to better illuminate the target. These parameters and waveforms are then used when illuminating the target. The state of the target is then measured from the reflected returns of the illuminating waveform. The newly received measurements then form the basis for the new state of the target and the procedure is repeated.
    Type: Application
    Filed: October 13, 2009
    Publication date: April 14, 2011
    Applicant: MCMASTER UNIVERSITY
    Inventors: Simon Haykin, Amin Zia, Ienkaran Arasaratnam, Yanbo Xue