Patents by Inventor Yanchun Wang

Yanchun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10351967
    Abstract: The present invention provides a method for forming a sensitive film for neutron detection, wherein the sensitive film is formed by electrophoresis coating, the liquid used for electrophoresis coating includes neutron sensitive material, electrophoresis paint and deionized water, and the neutron sensitive material is 10B single substance, 10B compound or mixture containing 10B. The sensitive film for neutron detection has the high detection efficiency because of the high content of 10B. The sensitive film for neutron detection has the uniform and stable film thickness, and excellent consistency. The production efficiency and the cost of the sensitive film are improved.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 16, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Yongqiang Wang, Qingjun Zhang, Yuanjing Li, Ziran Zhao, Jianping Chang, Yanchun Wang, Lifeng Sun, Nan Bai, Xingliang Zhai
  • Publication number: 20190185296
    Abstract: The invention discloses a wind protection anchoring system for a bridge crane and a method, wherein the system comprises four wind protection pull rods mounted on the bridge crane and four ground wind protection foundations corresponding to the four wind protection pull rods; the wind protection pull rod comprises a pull rod body, a pull rod nut, a driving device and a lock pin; the pull rod nut is connected to the pull rod body with threads thereon and mounted on the bridge crane; the top end of the pull rod body is fixedly provided with a driven device and the bottom end is connected to a lock pin; a lock pin fixing groove is formed on the ground wind protection foundation, at which mounted a fixing plate opened with a first opening and a second opening,; the driving device is driven by the wind protection anchoring control module to enable the pull rod body to descend and enter into the lock pin fixing groove through the second opening, and enable the pull rod body to ascend and being blocked by the first
    Type: Application
    Filed: July 28, 2017
    Publication date: June 20, 2019
    Inventors: Liangang ZHANG, Minghui ZHENG, Jiemin YANG, Wei ZHANG, Wangyang LIU, Yanchun WANG, Zhaofu WANG
  • Patent number: 10276359
    Abstract: The present disclosure provides an ion mobility spectrometer, which comprises: a power supply circuit, configured to provide a power supply voltage; a corona discharge configured to generate ions to be subjected to measurement, through corona discharge; an ion migration circuit configured to control migration of the ions; a migration zone structure configured to realize, under control of the ion migration circuit, mobility spectrum measurement of the ions which pass through the migration zone structure; a redundant charge extraction electrode arranged between the corona discharge structure and the migration zone structure, so that the ions which are generated by the corona discharge structure can pass therethrough to reach the migration zone structure; and a redundant charge extraction circuit, wherein the redundant charge extraction electrode is connected to the ground through the redundant charge extraction circuit.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: April 30, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Yanchun Wang, Ziran Zhao, Xianghua Li, Qiufeng Ma, Ge Li, Biao Cao, Qi Mao, Xiang Zou
  • Patent number: 10144647
    Abstract: A method for preparing a carbon nanotube (CNT) film is provided, comprising: providing a growth chamber of CNTs, which includes an inlet end, an outlet end, and a first-level growth cavity and a second-level growth cavity, and the first-level growth cavity and the second-level growth cavity are in fluid communication between the inlet end and the outlet end; making precursor materials, which are used for forming CNTs, react in at least the first-level growth cavity of the growth chamber of CNTs to generate CNTs; and making a carrier gas flow into the growth chamber through the inlet end, and pass through the first-level growth cavity and the second-level growth cavity in sequence, wherein, a radial dimension of the first-level growth cavity in a flowing direction of the carrier gas is smaller than that of the second-level growth cavity at a junction between the first-level growth cavity and the second-level growth cavity, and a bubble blowing process is conducted with the precursor materials under the drive o
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: December 4, 2018
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Weiya Zhou, Qiang Zhang, Yanchun Wang, Sishen Xie
  • Publication number: 20180182606
    Abstract: The present disclosure provides an ion mobility spectrometer, which comprises: a power supply circuit, configured to provide a power supply voltage; a corona discharge configured to generate ions to be subjected to measurement, through corona discharge; an ion migration circuit configured to control migration of the ions; a migration zone structure configured to realize, under control of the ion migration circuit, mobility spectrum measurement of the ions which pass through the migration zone structure; a redundant charge extraction electrode arranged between the corona discharge structure and the migration zone structure, so that the ions which are generated by the corona discharge structure can pass therethrough to reach the migration zone structure; and a redundant charge extraction circuit, wherein the redundant charge extraction electrode is connected to the ground through the redundant charge extraction circuit.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 28, 2018
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Yanchun Wang, Ziran Zhao, Xianghua Li, Qiufeng Ma, Ge Li, Biao Cao, Qi Mao, Xiang Zou
  • Publication number: 20180179658
    Abstract: the present invention provides a method for forming a sensitive film for neutron detection, wherein the sensitive film is formed by electrophoresis coating, the liquid used for electrophoresis coating includes neutron sensitive material, electrophoresis paint and deionized water, and the neutron sensitive material is 10B single substance, 10B compound or mixture containing 10B. The sensitive film for neutron detection has the high detection efficiency because of the high content of 10B. The sensitive film for neutron detection has the uniform and stable film thickness, and excellent consistency. The production efficiency and the cost of the sensitive film are improved.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 28, 2018
    Inventors: Yongqiang WANG, Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Jianping CHANG, Yanchun WANG, Lifeng SUN, Nan BAI, Xingliang ZHAI
  • Publication number: 20180178415
    Abstract: A mold and a method of manufacturing GOS ceramic scintillator by using the mold are provided. The mold comprises: a female outer sleeve having a cavity disposed inside; a plurality of female blocks disposed inside the cavity, the plurality of female blocks being put together to form a composite structure having a vertical through hole; and a male upper pressing head and a male lower pressing head, wherein each of the male upper pressing head and the male lower pressing head has a shape consistent with that of the vertical through hole. The disclosure may reduce defects of the related art in hot-pressing-sintering such as a mold has a short retirement period and a high material waste, significantly reduce the cost for production of the GOS ceramic scintillator, and significantly improve a process economy.
    Type: Application
    Filed: November 17, 2017
    Publication date: June 28, 2018
    Inventors: Yanchun WANG, Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Nan BAI
  • Patent number: 9869775
    Abstract: A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: January 16, 2018
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Wenjian Zhang, Shuqing Zhao, Xiang Zou, Yongqiang Wang
  • Patent number: 9816028
    Abstract: The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 14, 2017
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Patent number: 9771515
    Abstract: The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 26, 2017
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Patent number: 9618484
    Abstract: The present invention discloses a general sample injector, comprising a sample injection port mechanism, a sample injector shell, a vaporizing chamber, a heater, a temperature control unit, a carrier gas channel, a septum purge channel, a flow splitting channel, a coolant channel, a multichannel flow control valve and a temperature control unit. The general sample injector, equivalent to a “programmed temperature vaporizer” injector combining splitting/no splitting with cold column head sample injection, gives full play to the advantages of various sample injection modes, overcomes a plurality of disadvantages, and has higher practicability and better flexibility.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 11, 2017
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Qiufeng Ma, Ziran Zhao, Yinong Liu, Yaohong Liu, Junxiao Wang, Xiang Zou, Yanchun Wang, Jianping Chang, Linxia Tan
  • Patent number: 9513266
    Abstract: A GC-IMS system is disclosed. The system includes a sample transfer device. The sample transfer device connects the gas chromatograph to the reaction region and, the sample from the gas chromatograph is transferred to the reaction region by the sample transfer device. With the GC-IMS system, generation of sample molecular ion fragments can be avoided so that the spectrum is easily identified; moreover, the application field of the GC-IMS system is extended to a range of analysis of organic macromolecule samples which have a high polarity, are difficult to volatilize, and are thermally instable. On the other hand, the GC-IMS system overcomes the defect of ion destruction due to neutralization reaction among positive and negative ions so as to evade the detection.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 6, 2016
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Qiufeng Ma, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Yanchun Wang, Junxiao Wang, Jianping Chang
  • Publication number: 20160347616
    Abstract: A method for preparing a carbon nanotube (CNT) film is provided, comprising: providing a growth chamber of CNTs, which includes an inlet end, an outlet end, and a first-level growth cavity and a second-level growth cavity, and the first-level growth cavity and the second-level growth cavity are in fluid communication between the inlet end and the outlet end; making precursor materials, which are used for forming CNTs, react in at least the first-level growth cavity of the growth chamber of CNTs to generate CNTs; and making a carrier gas flow into the growth chamber through the inlet end, and pass through the first-level growth cavity and the second-level growth cavity in sequence, wherein, a radial dimension of the first-level growth cavity in a flowing direction of the carrier gas is smaller than that of the second-level growth cavity at a junction between the first-level growth cavity and the second-level growth cavity, and a bubble blowing process is conducted with the precursor materials under the drive o
    Type: Application
    Filed: April 22, 2014
    Publication date: December 1, 2016
    Inventors: WEIYA ZHOU, QIANG ZHANG, YANCHUN WANG, SISHEN XIE
  • Publication number: 20160187500
    Abstract: A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 30, 2016
    Inventors: Yanchun WANG, Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Jianping CHANG, Wenjian ZHANG, Shuqing ZHAO, Xiang ZOU, Yongqiang WANG
  • Patent number: 9337626
    Abstract: The present invention discloses a corona discharge assembly, an ion mobility spectrometer, an computer program and an computer readable storage medium. The corona discharge assembly includes: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and a trumpet-shaped front port which is conductive to forming a gathered electric field; multiple corona pins, in which on-off of a high voltage can be independently controlled, are installed at the center of the metal corona cylinder in an insulating manner. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 10, 2016
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Yanchun Wang, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Qiufeng Ma, Junxiao Wang, Xianghua Li, Jianping Chang
  • Publication number: 20160115030
    Abstract: A method for preparing a carbon nanotube (CNT) film is provided, comprising: providing a growth chamber of CNTs, which includes an inlet end, an outlet end, and a first-level growth cavity and a second-level growth cavity, and the first-level growth cavity and the second-level growth cavity are in fluid communication between the inlet end and the outlet end; making precursor materials, which are used for forming CNTs, react in at least the first-level growth cavity of the growth chamber of CNTs to generate CNTs; and making a carrier gas flow into the growth chamber through the inlet end, and pass through the first-level growth cavity and the second-level growth cavity in sequence, wherein, a radial dimension of the first-level growth cavity in a flowing direction of the carrier gas is smaller than that of the second-level growth cavity at a junction between the first-level growth cavity and the second-level growth cavity, and a bubble blowing process is conducted with the precursor materials under the drive o
    Type: Application
    Filed: April 22, 2014
    Publication date: April 28, 2016
    Inventors: WEIYA ZHOU, QIANG ZHANG, YANCHUN WANG, SISHEN XIE
  • Patent number: 9285342
    Abstract: An ion mobility spectrometer system is disclosed. In one aspect, the system includes a gas chromatograph, first and second ion mobility spectrometers, and a sample feed device that feeds a sample from the gas chromatograph to the first and second ion mobility spectrometers. The sample feed device includes an inner chamber, first and second sample outlets for outputting the sample from the gas chromatograph to the first and second ion mobility spectrometers, respectively, and a gas inlet for inputting a gas into the sample feed device. The system detects and identifies molecules at improved resolution and enhanced molecule information. The system detects positive and negative ions, interrelates positive-mode and negative-mode spectrums, and separates substances.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: March 15, 2016
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Shiping Cao, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Jianping Chang, Yan Zheng, Yanchun Wang, Shaoji Mao
  • Publication number: 20160046860
    Abstract: The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 18, 2016
    Inventors: Yanchun WANG, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Publication number: 20160046861
    Abstract: The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 18, 2016
    Inventors: Yanchun WANG, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Patent number: 9231383
    Abstract: The present invention discloses a corona discharge assembly, including: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and an annular piece-shaped port which forms a non-uniform electric field with corona pins and is provided with a circular hole at the middle; a rotating shaft is installed on the cylinder wall of the metal corona cylinder in an insulating manner, the rotating shaft is vertical to the axial line of the metal corona cylinder, and a turntable provided with multiple corona pins at the outer edge is installed at the end part of the rotating shaft the axial line of the metal corona cylinder passes in parallel through the rotation plane of the turntable. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 5, 2016
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Yanchun Wang, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Qiufeng Ma, Junxiao Wang, Jianping Chang