Patents by Inventor Yanfeng Wang

Yanfeng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9059291
    Abstract: A semiconductor device includes a semiconductor-on-insulator (SOI) substrate having a bulk substrate layer, an active semiconductor layer, and a buried insulator layer interposed between the bulk substrate layer and the active semiconductor layer. A first source/drain (S/D) region includes a first stand-alone butting implant having a first butting width. A second S/D region includes a second stand-alone butting implant having a second butting width. A gate well-region is interposed between the first and second S/D regions. The gate well-region has a gate width that is greater than the first and second butting widths.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Wilfried E. Haensch, Gan Wang, Xin Wang, Yanfeng Wang, Keith Kwong Hon Wong
  • Patent number: 9059315
    Abstract: Embodiments include methods of forming an nFET-tuned gate dielectric and a pFET-tuned gate dielectric. Methods may include forming a high-k layer above a substrate having a pFET region and an nFET region, forming a first sacrificial layer, a pFET work-function metal layer, and a second sacrificial layer above the first high-k layer in the pFET region, and an nFET work-function metal layer above the first high-k layer in the nFET region and above the second sacrificial layer in the pFET region. The first high-k layer then may be annealed to form an nFET gate dielectric layer in the nFET region and a pFET gate dielectric layer in the pFET region. The first high-k layer may be annealed in the presence of a nitrogen source to cause atoms from the nitrogen source to diffuse into the first high-k layer in the nFET region.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: June 16, 2015
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, Inc.
    Inventors: Takashi Ando, Maryjane Brodsky, Michael P. Chudzik, Min Dai, Siddarth A. Krishnan, Joseph F. Shepard, Jr., Yanfeng Wang, Jinping Liu
  • Patent number: 9040399
    Abstract: A structure includes a substrate; a transistor disposed over the substrate, the transistor comprising a fin comprised of Silicon that is implanted with Carbon; and a gate dielectric layer and gate metal layer overlying a portion of the fin that defines a channel of the transistor. In the structure a concentration of Carbon within the fin is selected to establish a desired voltage threshold of the transistor. Methods to fabricate a FinFET transistor are also disclosed. Also disclosed is a planar transistor having a Carbon-implanted well where the concentration of the Carbon within the well is selected to establish a desired voltage threshold of the transistor.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: MaryJane Brodsky, Ming Cai, Dechao Guo, William K. Henson, Shreesh Narasimha, Yue Liang, Liyang Song, Yanfeng Wang, Chun-Chen Yeh
  • Publication number: 20150137269
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Application
    Filed: December 16, 2014
    Publication date: May 21, 2015
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Patent number: 9034715
    Abstract: A finFET and method of fabrication are disclosed. A sacrificial layer is formed on a bulk semiconductor substrate. A top semiconductor layer (such as silicon) is disposed on the sacrificial layer. The bulk semiconductor substrate is recessed in the area adjacent to the transistor gate and a stressor layer is formed in the recessed area. The sacrificial layer is selectively removed and replaced with an insulator, such as a flowable oxide. The insulator provides isolation between the transistor channel and the bulk substrate without the use of dopants.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Yanfeng Wang, Dechao Guo, Darsen Lu, Philip J. Oldiges, Gan Wang, Xin Wang
  • Patent number: 9029959
    Abstract: A composite high dielectric constant (high-k) gate dielectric includes a stack of a doped high-k gate dielectric and an undoped high-k gate dielectric. The doped high-k gate dielectric can be formed by providing a stack of a first high-k dielectric material layer and a dopant metal layer and annealing the stack to induce the diffusion of the dopant metal into the first high-k dielectric material layer. The undoped high-k gate dielectric is formed by subsequently depositing a second high-k dielectric material layer. The composite high-k gate dielectric can provide an increased gate-leakage oxide thickness without increasing inversion oxide thickness.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: MaryJane Brodsky, Michael P. Chudzik, Min Dai, Joseph F. Shepard, Jr., Shahab Siddiqui, Yanfeng Wang, Jinping Liu
  • Patent number: 9029172
    Abstract: An on-chip poly-to-contact process monitoring and reliability evaluation system and method of use are provided. A method includes determining a breakdown electrical field of each of one or more shallow trench isolation (STI) measurement structures corresponding to respective one or more original semiconductor structures. The method further includes determining a breakdown voltage of each of one or more substrate measurement structures corresponding to the respective one or more original semiconductor structures. The method further includes determining a space between a gate and a contact of each of the one or more original semiconductor structures based on the determined breakdown electrical field and the determined breakdown voltage.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Roger A. Dufresne, Timothy D. Sullivan, Yanfeng Wang
  • Publication number: 20150072481
    Abstract: A semiconductor device includes a semiconductor-on-insulator (SOI) substrate having a bulk substrate layer, an active semiconductor layer, and a buried insulator layer interposed between the bulk substrate layer and the active semiconductor layer. A first source/drain (S/D) region includes a first stand-alone butting implant having a first butting width. A second S/D region includes a second stand-alone butting implant having a second butting width. A gate well-region is interposed between the first and second S/D regions. The gate well-region has a gate width that is greater than the first and second butting widths.
    Type: Application
    Filed: January 14, 2014
    Publication date: March 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Wilfried E. Haensch, Gan Wang, Xin Wang, Yanfeng Wang, Keith Kwong Hon Wong
  • Publication number: 20150069513
    Abstract: A semiconductor device includes a semiconductor-on-insulator (SOI) substrate having a bulk substrate layer, an active semiconductor layer, and a buried insulator layer interposed between the bulk substrate layer and the active semiconductor layer. A first source/drain (S/D) region includes a first stand-alone butting implant having a first butting width. A second S/D region includes a second stand-alone butting implant having a second butting width. A gate well-region is interposed between the first and second S/D regions. The gate well-region has a gate width that is greater than the first and second butting widths.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Wilfried E. Haensch, Gan Wang, Xin Wang, Yanfeng Wang, Keith Kwong Hon Wong
  • Patent number: 8969933
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Publication number: 20150054093
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Application
    Filed: November 10, 2014
    Publication date: February 26, 2015
    Inventors: Eduard A. CARTIER, Brian J. GREENE, Dechao GUO, Gan WANG, Yanfeng WANG, Keith Kwong Hon WONG
  • Patent number: 8932949
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Brian J. Greene, Dechao Guo, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong
  • Patent number: 8916583
    Abstract: The invention provides sprayable aqueous compositions containing zolpidem or single stereoisomer, mixtures of stereoisomers, pharmaceutically acceptable salts or prodrugs thereof, a solubilizing agent, a water soluble polymer with bioadhesive property. When administered intranasally using a spray device, zolpidem is rapidly absorbed with prolonged intranasal residence time and improved bioavailability. The compositions can be applied for the treatment of insomnia-related disorders such as difficulties with sleep initiation or middle of the night awakenings.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: December 23, 2014
    Assignee: Renascence Therapeutics Limited
    Inventors: Yanfeng Wang, Benjamin T. K. Lee, Tony C. Y. Ho, Melvin K. M. Toh
  • Publication number: 20140300340
    Abstract: A device structure for detecting partial pressure of oxygen in blood includes a semiconductor substrate including a source region and a drain region. A multi-layer gate structure is formed on the semiconductor substrate. The multi-layer gate structure includes an oxide layer formed over the semiconductor substrate, a high-k layer formed over the oxide layer, a metal gate layer formed over the high-k layer, and a polysilicon layer formed over the metal gate layer. A receiving area holds a blood sample in contact with the multi-layer gate structure. The high-k layer is exposed to contact the blood sample in the receiving area.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 9, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chen SHI, Steven E. STEEN, Yanfeng WANG, Sufi ZAFAR
  • Publication number: 20140299922
    Abstract: A device structure for detecting partial pressure of oxygen in blood includes a semiconductor substrate including a source region and a drain region. A multi-layer gate structure is formed on the semiconductor substrate. The multi-layer gate structure includes an oxide layer formed over the semiconductor substrate, a high-k layer formed over the oxide layer, a metal gate layer formed over the high-k layer, and a polysilicon layer formed over the metal gate layer. A receiving area holds a blood sample in contact with the multi-layer gate structure. The high-k layer is exposed to contact the blood sample in the receiving area.
    Type: Application
    Filed: August 20, 2013
    Publication date: October 9, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: CHEN SHI, STEVEN E. STEEN, YANFENG WANG, SUFI ZAFAR
  • Patent number: 8847401
    Abstract: Disclosed is a semiconductor structure incorporating a contact sidewall spacer with a self-aligned airgap and a method of forming the semiconductor structure. The structure comprises a semiconductor device (e.g., a two-terminal device, such as a PN junction diode or Schottky diode, or a three-terminal device, such as a field effect transistor (FET), a bipolar junction transistor (BJT), etc.) and a dielectric layer that covers the semiconductor device. A contact extends vertically through the dielectric layer to a terminal of the semiconductor device (e.g., in the case of a FET, to a source/drain region of the FET). A contact sidewall spacer is positioned on the contact sidewall and incorporates an airgap. Since air has a lower dielectric constant than other typically used dielectric spacer or interlayer dielectric materials, the contact size can be increased for reduced parasitic resistance while minimizing corresponding increases in parasitic capacitance or the probability of shorts.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Jeffrey P. Gambino, Zhong-Xiang He, Xin Wang, Yanfeng Wang
  • Publication number: 20140264591
    Abstract: A finFET and method of fabrication are disclosed. A sacrificial layer is formed on a bulk semiconductor substrate. A top semiconductor layer (such as silicon) is disposed on the sacrificial layer. The bulk semiconductor substrate is recessed in the area adjacent to the transistor gate and a stressor layer is formed in the recessed area. The sacrificial layer is selectively removed and replaced with an insulator, such as a flowable oxide. The insulator provides isolation between the transistor channel and the bulk substrate without the use of dopants.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yanfeng Wang, Dechao Guo, Darsen Lu, Philip J. Oldiges, Gan Wang, Xin Wang
  • Publication number: 20140246727
    Abstract: A device including a p-type semiconductor device and an n-type semiconductor device on a semiconductor substrate. The n-type semiconductor device includes a gate structure having a high-k gate dielectric. A carbon dopant in a concentration ranging from 1×1016 atoms/cm3 to 1×1021 atoms/cm3 is present at an interface between the high-k gate dielectric of the gate structure for the n-type semiconductor device and the semiconductor substrate. Methods of forming the aforementioned device are also disclosed.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 4, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yue Liang, Dechao Guo, William K. Henson, Shreesh Narasimha, Yanfeng Wang
  • Publication number: 20140217504
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eduard A. CARTIER, Brian J. GREENE, Dechao GUO, Gan WANG, Yanfeng WANG, Keith Kwong Hon WONG
  • Patent number: 8797112
    Abstract: An ASK modulator includes a baseband unit which obtains a sequence comprising at least one amplitude value and adds an additional value to each of the at least one amplitude value to generate a modified sequence; a digital-to-analog converter coupled to the baseband unit, the digital-to-analog converter converts the modified sequence to generate a first signal, the additional value is determined based on a half scale of the digital-analog converter; and a mixer which receives the first signal and a second signal and generate a modulated signal by mixing the first signal with the second signal.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Beken Corporation
    Inventors: Peng Han, Dawei Guo Guo, Jiazhou Liu, Yanfeng Wang