Patents by Inventor Yang-Kuao Kuo

Yang-Kuao Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230219855
    Abstract: A method of preparation of a ceramic slurry for use in 3D printing includes steps of: (A) providing a plasticizer and a disperser and mixing the plasticizer and the disperser evenly; (B) mixing the mixture obtained in step (A) with an adhesive, wherein the adhesive is polyvinyl alcohol; and (C) adding a Yttria-stabilized zirconia powder to the mixture obtained in step (B) to produce, by sufficient blending and deaerating, the ceramic slurry for use in 3D printing. A method of preparation of a ceramic product includes steps of: (A) preparing a ceramic slurry with the method; (B) performing 3D printing with the ceramic slurry to form a primary green body; (C) placing the primary green body in a freezer to undergo a refrigeration process, thereby causing crystallization of polyvinyl alcohol; and (D) thawing the frozen primary green body to form a plastic green body with gel structure.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Inventors: CHUN-TE WU, YANG-KUAO KUO
  • Publication number: 20230203674
    Abstract: Provides a method for producing aluminum oxide powder by electrochemical dissolving aluminum salt, comprise: (A) providing an electrochemical device with an aluminum material as an anode and an acidic solution as an electrolyte; (B) accelerating the dissolution of the aluminum material by current pulse method to form an acidic aluminum salt solution; (C) neutralizing the acidic aluminum salt solution with a basic solution to form an aluminum hydroxide sol; (D) adding an additive in the aluminum hydroxide sol, filtering the aluminum hydroxide sol and drying to obtain aluminum hydroxide powder; (E) roasting the aluminum hydroxide powder to form micron scale ?-aluminum oxide powder. Combines the acidic aluminum salt method and the electrochemical dissolution method to improve the dissolving rate of the aluminum material and increase the output efficiency of the acidic aluminum salt, and obtaining micron scale ?-aluminum oxide powder.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: JIAN-LONG RUAN, YANG-KUAO KUO
  • Patent number: 9972520
    Abstract: Disclosed is an aluminum nitride electrostatic chuck, comprising: a positioning electrostatic chuck and a carrier structure. The positioning electrostatic chuck includes a groove structure layer, a dielectric insulation layer, and a heat conduction layer. In the groove structure layer on the surface of the electrostatic chuck is provided with cooling gas channels, to facilitate control of the temperature distribution of a wafer. The electrostatic chuck is especially designed for use in a semiconductor manufacturing process of high temperature and high plasma power density. The dielectric insulation layer is provided with embedded electrodes, such that voltage conversion can be carried out to effect wafer absorption/release. The cooling gas channels are used to control temperature of the absorbed wafer, by means of heat conduction of aluminum nitride electrostatic chuck. Therefore, wafer temperature distribution is controlled through aspect ratio and geometry of cooling gas channel.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: May 15, 2018
    Assignee: NATIONAL CHUNG-SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yang-Kuao Kuo, Yi-Hsiuan Yu, Jian-Long Ruan
  • Publication number: 20170140969
    Abstract: Disclosed is an aluminum nitride electrostatic chuck, comprising: a positioning electrostatic chuck and a carrier structure. The positioning electrostatic chuck includes a groove structure layer, a dielectric insulation layer, and a heat conduction layer. In the groove structure layer on the surface of the electrostatic chuck is provided with cooling gas channels, to facilitate control of the temperature distribution of a wafer. The electrostatic chuck is especially designed for use in a semiconductor manufacturing process of high temperature and high plasma power density. The dielectric insulation layer is provided with embedded electrodes, such that voltage conversion can be carried out to effect wafer absorption/release. The cooling gas channels are used to control temperature of the absorbed wafer, by means of heat conduction of aluminum nitride electrostatic chuck. Therefore, wafer temperature distribution is controlled through aspect ratio and geometry of cooling gas channel.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Yang-Kuao Kuo, Yi-Hsiuan Yu, Jian-Long Ruan
  • Patent number: 9216906
    Abstract: A method for manufacturing aluminum nitride powder includes steps of: preparing a polymer powder, a wood powder having grain size similar with that of the polymer powder, and an alumina powder; and mixing the polymer powder, the wood powder and the alumina powder uniformly and forming granules to be carried out a single-replacement reaction by exposing the granules in a nitrogen-containing atmosphere at a temperature of 1680-1850° C.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: December 22, 2015
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yang-Kuao Kuo, Yung-Han Huang, Cheng-Hung Shih, Lea-Hwung Leu
  • Publication number: 20150345040
    Abstract: A method of manufacturing a nickel-based alloy barrier layer of a wiring connection terminal includes providing a substrate having a metal wiring; electroplating a nickel or a nickel-based alloy to the metal wiring at a deposition rate of 15-30 ?m/hr to form a first layer thereon, wherein the first layer is of a thickness of 0.5 ?m-5 ?m, and the nickel-based alloy layer has nickel content of at least 50%; and plating a gold layer to the first layer to form thereon a second layer of a thickness of 0.03 ?m-0.3 ?m. The surface of the nickel-based alloy electroplated layer features a crystalline-phase structure full of micro-protuberances, and the thickness of the gold plated layer is reduced to 0.03 ?m.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: CHI-HAW CHIANG, CHIH WANG, YU-PING WANG, CHUN-YU LEE, REN-RUEY FANG, YANG-KUAO KUO
  • Publication number: 20150175421
    Abstract: A method for manufacturing aluminum nitride powder includes steps of: preparing a polymer powder, a wood powder having grain size similar with that of the polymer powder, and an alumina powder; and mixing the polymer powder, the wood powder and the alumina powder uniformly and forming granules to be carried out a single-replacement reaction by exposing the granules in a nitrogen-containing atmosphere at a temperature of 1680-1850° C.
    Type: Application
    Filed: December 25, 2013
    Publication date: June 25, 2015
    Applicant: Chung-Shan Institute of Science and Technology, Armaments Bureau, M.N.D.
    Inventors: Yang-Kuao Kuo, Yung-Han Huang, Cheng-Hung Shih, Lea-Hwung Leu
  • Publication number: 20150171052
    Abstract: A substrate of semiconductor is formed by a method including preparing two aluminum nitride (AlN) substrates; forming a first buffer layer on a surface of each AlN substrate; forming a second buffer layer on a free surface of each first buffer layer; and providing an oxygen free copper (OFC) layer to be securely sandwiched between the second buffer layers through a sintering process. Said substrate is a sandwiched structure and is able to be directly carried out coating process to grow semiconductor device thereon.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Chung-Shan Institute of Science and Technology, Armaments Bureau, M.N.D
    Inventors: Yang-Kuao Kuo, Cheng-Hung Shih, Jian-Long Ruan, Lea-Hwung Leu
  • Patent number: 8920706
    Abstract: Disclosed is a method for hot isostatic pressing a substrate. At first, a metal container is provided. Powder is filled in the metal container before the metal container is located in an oven. The metal container is subjected to isostatic pressing that includes heating and pressing. Thus, the metal container shrinks and presses on the powder evenly and turns the powder into a nugget. The metal container is moved out of the oven and broken to release the nugget. A substrate is cut from the nugget. With the hot isostatic pressing, the substrate exhibits only a few flaws and is large, fine, homogenous and strong so that the substrate is not vulnerable to deformation in a high-pressure environment.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 30, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Ching-Hui ChiangLin, Fu-Hsing Huang
  • Patent number: 8829537
    Abstract: Disclosed is an integrated apparatus including an isolative substrate, a plurality of driver chips provided on a side of the isolative substrate, a power supply provided on the side of the isolative substrate and electrically connected to the driver chips, and LED chips provided on another side of the isolative substrate and electrically connected to the driver chips. Thus, the driver chips, the power supply and the LED chips are integrated on the isolative substrate. The production is easy. The integrated apparatus is not vulnerable to surges and lightning strikes. Electromagnetic interferences are reduced. Heat radiation of the integrated apparatus is excellent so that the LED chips are protected from thermal effect.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chin-Peng Wang, Lea-Hwung Leu
  • Patent number: 8741211
    Abstract: Disclosed is a method for making a pure aluminum nitride substrate. At first, aluminum nitride is mixed with a water-resistant material and an adhesive material. The mixture is made into grains in a granulation process. The grains are molded into a nugget in a steel mode by hydraulic pressure. The nugget is subjected to a cold isostatic pressing process. At a low temperature, the water-resistant material and the adhesive material are removed from the nugget. Then, the nugget, boron nitride and nitrogen are introduced into and sintered in an oven, thus providing a pure aluminum nitride substrate. The purity and quality of the aluminum nitride substrate are high. The aluminum nitride substrate can be used in a light-emitting diode. The method is simple, the yield is high, and the heat radiation of the aluminum nitride substrate is excellent.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Ching-Hui ChiangLin, Te-Po Liu
  • Patent number: 8646706
    Abstract: Disclosed is a method for protecting aluminum nitride from moisture. At first, a mixing apparatus is provided. Aluminum nitride powder, calcium silicate, dodecylamine, a binding agent and an anhydrous solvent are mixed with one another by the mixing apparatus. The mixture is made into grains in a granulating process. The hydrophilism, thermal stability and thermal conductivity of the dodecylamine are used to make the grains moisture-proof and not vulnerable to deterioration. Thus, the stability of the aluminum nitride is improved.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 11, 2014
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Fu-Hsing Huang
  • Publication number: 20130032837
    Abstract: Disclosed is a fluorescent coating and a method for making the same. At first, fluorescent powder is mixed with an anti-electrostatic solution. The mixture is cleared of impurities before it is dried and sintered. Thus, the fluorescent powder is coated with the anti-electrostatic material. The fluorescent powder coated with the anti-electrostatic material is plated on a side of a light-emitting diode (“LED”) chip by electrophoresis, thus forming a mixing zone on the side of the LED chip. Hence, the mixing zone is not vulnerable to deterioration or itiolation when it is subjected to heat in use. Accordingly, the life of the LED chip is long, and the illumination of the LED chip is high.
    Type: Application
    Filed: September 21, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Hsin-Liang Chen, Chun-Yen Lo, Chin-Peng Wang
  • Publication number: 20130035224
    Abstract: Disclosed is a method for making an aluminum nitride substrate. At first, aluminum nitride is mixed with a carbonized material. The mixture is made into mixture powder in a granulation process. The mixture powder is sintered at an appropriate temperature so that the carbonized material reacts with oxygen to produce a gaseous carbon compound. The gaseous carbon compound is released, and hence an aluminum nitride substrate is made. Before the making of the aluminum nitride substrate is made, the aluminum nitride powder is mixed with the carbonized material. For the stable heat dispersion of the carbonized material, the heating is even during the sintering. The purity of the aluminum nitride substrate is high, the quality of the aluminum nitride substrate is good, and the size of the aluminum nitride substrate is large. Hence, the yield of the making of the aluminum nitride substrate is high.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Bi-Jheng Chang, Fu-Hsing Huang
  • Publication number: 20130032826
    Abstract: Disclosed is an integrated apparatus including an isolative substrate, a plurality of driver chips provided on a side of the isolative substrate, a power supply provided on the side of the isolative substrate and electrically connected to the driver chips, and LED chips provided on another side of the isolative substrate and electrically connected to the driver chips. Thus, the driver chips, the power supply and the LED chips are integrated on the isolative substrate. The production is easy. The integrated apparatus is not vulnerable to surges and lightning strikes. Electromagnetic interferences are reduced. Heat radiation of the integrated apparatus is excellent so that the LED chips are protected from thermal effect.
    Type: Application
    Filed: September 22, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chin-Peng Wang, Lea-Hwung Leu
  • Publication number: 20130032649
    Abstract: Disclosed is a method for protecting aluminum nitride from moisture. At first, a mixing apparatus is provided. Aluminum nitride powder, calcium silicate, dodecylamine, a binding agent and an anhydrous solvent are mixed with one another by the mixing apparatus. The mixture is made into grains in a granulating process. The hydrophilism, thermal stability and thermal conductivity of the dodecylamine are used to make the grains moisture-proof and not vulnerable to deterioration. Thus, the stability of the aluminum nitride is improved.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Fu-Hsing Huang
  • Publication number: 20130032975
    Abstract: Disclosed is a method for making a pure aluminum nitride substrate. At first, aluminum nitride is mixed with a water-resistant material and an adhesive material. The mixture is made into grains in a granulation process. The grains are molded into a nugget in a steel mode by hydraulic pressure. The nugget is subjected to a cold isostatic pressing process. At a low temperature, the water-resistant material and the adhesive material are removed from the nugget. Then, the nugget, boron nitride and nitrogen are introduced into and sintered in an oven, thus providing a pure aluminum nitride substrate. The purity and quality of the aluminum nitride substrate are high. The aluminum nitride substrate can be used in a light-emitting diode. The method is simple, the yield is high, and the heat radiation of the aluminum nitride substrate is excellent.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Ching-Hui ChiangLin, Te-Po Liu
  • Publication number: 20130032965
    Abstract: Disclosed is a method for hot isostatic pressing a substrate. At first, a metal container is provided. Powder is filled in the metal container before the metal container is located in an oven. The metal container is subjected to isostatic pressing that includes heating and pressing. Thus, the metal container shrinks and presses on the powder evenly and turns the powder into a nugget. The metal container is moved out of the oven and broken to release the nugget. A substrate is cut from the nugget. With the hot isostatic pressing, the substrate exhibits only a few flaws and is large, fine, homogenous and strong so that the substrate is not vulnerable to deformation in a high-pressure environment.
    Type: Application
    Filed: September 21, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Ching-Hui ChiangLin, Fu-Hsing Huang
  • Publication number: 20130034623
    Abstract: Disclosed is a substrate-molding apparatus. The substrate-molding apparatus includes a shell, a mold movably located in the shell, an upper pressing disc movably located in the mold, and a lower pressing disc movably located in the mold. The shell includes an internal space defined therein and two open ends in communication with the internal space. The mold includes an internal space defined therein. The upper pressing disc includes at least one cutout defined in the edge thereof. Powder is filled in the internal space of the mold. The powder is pressed and molded by the upper pressing disc driven by hydraulic pressure. The molded product is removed from the mold by hydraulic pressure. Thus, the removal of the molded product from the mold is easy and fast. The yield is high. Moreover, the substrate-molding apparatus can be used repeatedly.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Ching-Hui ChiangLin, Te-Po Liu
  • Publication number: 20130034488
    Abstract: Disclosed is a method for removing oxygen from aluminum nitride by carbon. At first, an oven is provided. An aluminum nitride substrate is located in the oven. Nitrogen is introduced into the oven to form an atmosphere of nitrogen. The temperature is increased to the transformation point of the aluminum nitride substrate in the oven. Then, the heating is stopped and quenching is conducted in the oven. Carbon is introduced into the oven in the quenching. Thus, oxygen included in the aluminum nitride substrate reacts with the carbon to produce carbon monoxide or carbon dioxide. The carbon monoxide or carbon is released from the oven as well as the nitrogen. Thus, the aluminum nitride substrate is purified.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 7, 2013
    Applicant: Chung-Shan Institute of Science and Technology Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Ching-Hui ChiangLin, Te-Po Liu