Patents by Inventor Yang-Pi Lin

Yang-Pi Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10957456
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components useable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 23, 2021
    Assignee: Global Nuclear Fuel—Americas, LLC
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Publication number: 20180254110
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components useable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 6, 2018
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Patent number: 9911511
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components usable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 6, 2018
    Assignee: GLOBAL NUCLEAR FUEL—AMERICAS, LLC
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Patent number: 9805831
    Abstract: There is provided a fuel rod assembly comprising a first component of a zirconium-based material. The first component is in contact with or is located adjacent to a second component of a material different from the zirconium-based material, e.g. a nickel-based or iron-based alloy. A coating is disposed on an outer surface of the first component, which is effective to reduce an electrochemical corrosion potential difference between the first component and the second component relative to an electrochemical corrosion potential difference between the first component and the second component without the coating.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Dennis Michael Gray, David William White, Yang-Pi Lin, Todd Charles Curtis, Charles Beaty Patterson
  • Publication number: 20170178755
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components usable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Application
    Filed: March 5, 2013
    Publication date: June 22, 2017
    Applicant: GLOBAL NUCLEAR FUEL - AMERICAS, LLC
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Patent number: 9646722
    Abstract: A method and apparatus for a fret resistant fuel rod for a Boiling Water Reactor (BWR) nuclear fuel bundle. An applied material entrained with fret resistant particles is melted or otherwise fused to a melted, thin layer of the fuel rod cladding. The applied material is made of a material that is chemically compatible with the fuel rod cladding, allowing the fret resistant particles to be captured in the thin layer of re-solidified cladding material to produce an effective and resilient fret resistant layer on an outer layer of the cladding.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 9, 2017
    Assignee: GLOBAL NUCLEAR FUEL—AMERICAS, LLC
    Inventors: Kevin Ledford, Yang-Pi Lin, Paul Cantonwine
  • Patent number: 9637809
    Abstract: An alloy according to example embodiments of the present invention may include zirconium, tin, iron, chromium, and nickel, with a majority of the alloy being zirconium. The composition of the alloy may be about 0.85-2.00% tin by weight, about 0.15-0.30% iron by weight, about 0.40-0.75% chromium by weight, and less than 0.01% nickel by weight. The alloy may further include 0.004-0.020% silicon by weight, 0.004-0.020% carbon by weight, and/or 0.05-0.20% oxygen by weight. Accordingly, the alloy exhibits reduced hydrogen absorption and improved corrosion resistance and may be used to form a fuel assembly component.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 2, 2017
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Yang-Pi Lin, David W. White, Daniel R. Lutz
  • Publication number: 20160005499
    Abstract: A method of coating a nuclear reactor component includes introducing the nuclear reactor component into a colloidal solution at a first rate to obtain an immersed component. The colloidal solution is a non-crosslinked mixture including a dispersed phase within a dispersion medium. The dispersed phase may include n-type metal oxide particles. The method additionally includes removing the immersed component from the colloidal solution at a second rate to obtain a wet component. The method also includes drying the wet component to obtain a dried component. The method further includes baking the dried component to obtain a coated component. Accordingly, the nuclear reactor component is provided with a protective layer that reduces or prevents the occurrence of corrosion.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 7, 2016
    Applicant: GE NUCLEAR ENERGY
    Inventors: Yang-Pi LIN, Young Jin KIM, David William WHITE, Garrett Scott NAVE, Patricia P. MCCUMBEE
  • Patent number: 9139895
    Abstract: Disclosed herein are zirconium-based alloys and methods of fabricating nuclear reactor components, particularly fuel cladding tubes, from such alloys that exhibit improved corrosion resistance in aggressive coolant compositions. The fabrication steps include a late-stage ?-treatment on the outer region of the tubes. The zirconium-based alloys will include between about 1.30 and 1.60 wt % tin; between about 0.06 and 0.15 wt % chromium; between about 0.16 and 0.24 wt % iron, and between 0.05 and 0.08 wt % nickel, with the total content of the iron, chromium and nickel comprising above about 0.31 wt % of the alloy and will be characterized by second phase precipitates having an average size typically less than about 40 nm. The final finished cladding will have a surface roughness of less than about 0.50 ?m Ra and preferably less then about 0.10 ?m Ra.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: September 22, 2015
    Assignee: Global Nuclear Fuel—Americas, LLC
    Inventors: David White, Daniel R. Lutz, Yang-Pi Lin, John Schardt, Gerald Potts
  • Publication number: 20140334592
    Abstract: There is provided a fuel rod assembly comprising a first component of a zirconium-based material. The first component is in contact with or is located adjacent to a second component of a material different from the zirconium-based material, e.g. a nickel-based or iron-based alloy. A coating is disposed on an outer surface of the first component, which is effective to reduce an electrochemical corrosion potential difference between the first component and the second component relative to an electrochemical corrosion potential difference between the first component and the second component without the coating.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Young Jin Kim, Dennis Michael Gray, David William White, Yang-Pi Lin, Todd Charles Curtis, Charles Beaty Patterson
  • Publication number: 20140254740
    Abstract: Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components usable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: GLOBAL NUCLEAR FUEL - AMERICAS, LLC
    Inventors: Kevin L. Ledford, Yuk-Chiu Lau, David W. White, Yang-Pi Lin, Paul E. Cantonwine, Nicholas R. Gullette, Timothy W. Clark
  • Patent number: 8792607
    Abstract: There is provided a fuel rod assembly comprising a first component of a zirconium-based material. The first component is in contact with or is located adjacent to a second component of a material different from the zirconium-based material, e.g. a nickel-based or iron-based alloy. A coating is disposed on an outer surface of the first component, which is effective to reduce an electrochemical corrosion potential difference between the first component and the second component relative to an electrochemical corrosion potential difference between the first component and the second component without the coating.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Dennis Michael Gray, David William White, Yang-Pi Lin, Todd Charles Curtis, Charles Beaty Patterson
  • Publication number: 20140185732
    Abstract: A method and apparatus for a fret resistant fuel rod for a Boiling Water Reactor (BWR) nuclear fuel bundle. An applied material entrained with fret resistant particles is melted or otherwise fused to a melted, thin layer of the fuel rod cladding. The applied material is made of a material that is chemically compatible with the fuel rod cladding, allowing the fret resistant particles to be captured in the thin layer of re-solidified cladding material to produce an effective and resilient fret resistant layer on an outer layer of the cladding.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Kevin Ledford, Yang-Pi Lin, Paul Cantonwine
  • Patent number: 8116422
    Abstract: A zirconium alloy suitable for forming reactor components that exhibit reduced irradiation growth and improved corrosion resistance during operation of a light water reactor (LWR), for example, a boiling water reactor (BWR). During operation of the reactor, the reactor components will be exposed to a strong, and frequently asymmetrical, radiation fields sufficient to induce or accelerate corrosion of the irradiated alloy surfaces within the reactor core. Reactor components fabricated from the disclosed zirconium alloy will also tend to exhibit an improved tolerance for cold-working during fabrication of the component, thereby simplifying the fabrication of such components by reducing or eliminating subsequent thermal processing, for example, anneals, without unduly degrading the performance of the finished component.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: February 14, 2012
    Assignee: General Electric Company
    Inventors: Daniel Reese Lutz, Gerald Allen Potts, Yang-Pi Lin, Sheikh Tahir Mahmood, Mark Andrew Dubecky, David William White, John Schardt
  • Publication number: 20120033779
    Abstract: A method of determining in-reactor susceptibility of a zirconium-based alloy to shadow corrosion according to a non-limiting embodiment of the present invention may include immersing a first electrode and a second electrode in an electrolytic solution. The first electrode may be formed of the zirconium-based alloy, while the second electrode may be formed of a metallic material suitable for use in a nuclear reactor and having a higher electrochemical corrosion potential than the zirconium-based alloy. The method may additionally include irradiating the immersed first and second electrodes with electromagnetic radiation. A galvanic current may then be measured between the first electrode and the second electrode to ascertain the relative in-reactor susceptibility of the zirconium-based alloy to shadow corrosion. The present invention allows a simplified and more rapid method of developing solutions that mitigate shadow corrosion, thereby potentially saving years of expensive in-reactor testing.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: GLOBAL NUCLEAR FUEL - AMERICAS, LLC
    Inventors: Daniel Reese Lutz, Young Jin Kim, Yang-Pi Lin
  • Patent number: 8043448
    Abstract: Disclosed herein are zirconium-based alloys that may be fabricated to form nuclear reactor components, particularly fuel cladding tubes, that exhibit sufficient corrosion resistance and hydrogen absorption characteristics, without requiring a late stage ?+? or ?-quenching processes. The zirconium-base alloys will include between about 1.30-1.60 wt % tin; 0.0975-0.15 wt % chromium; 0.16-0.24 wt % iron; and up to about 0.08 wt % nickel, with the total content of the iron, chromium and nickel comprising at least about 0.3175 wt % of the alloy. The resulting components will exhibit a surface region having a mean precipitate sizing of between about 50 and 100 nm and a Sigma A of less than about 2×10?19 hour with the workpiece processing generally being limited to temperatures below 680° C. for extrusion and below 625° C. for all other operations, thereby simplifying the fabrication of the nuclear reactor components while providing corrosion resistance comparable with conventional alloys.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: October 25, 2011
    Assignee: Global Nuclear Fuel-Americas, LLC
    Inventors: David White, Daniel R. Lutz, Yang-Pi Lin, John Schardt, Gerald Potts, Robert Elkins, Hiroaki Kagami, Hideyuki Mukai
  • Publication number: 20110180184
    Abstract: A method for treating a Zr-alloy fuel bundle material in a nuclear reactor includes treating a surface of the Zr-alloy fuel bundle material with a laser beam generated by a solid-state laser, and a nuclear reactor including a treated Zr-alloy fuel bundle material. This may reduce the generation of shadow corrosion and/or reduce the propensity for interference between control blade and fuel channel during operation of the nuclear reactor.
    Type: Application
    Filed: December 15, 2006
    Publication date: July 28, 2011
    Inventors: Daniel Reese Lutz, Yang-Pi Lin, Gerald Potts, William H. Jackson
  • Publication number: 20110123388
    Abstract: An alloy according to example embodiments of the present invention may include zirconium, tin, iron, chromium, and nickel, with a majority of the alloy being zirconium. The composition of the alloy may be about 0.85-2.00% tin by weight, about 0.15-0.30% iron by weight, about 0.40-0.75% chromium by weight, and less than 0.01% nickel by weight. The alloy may further include 0.004-0.020% silicon by weight, 0.004-0.020% carbon by weight, and/or 0.05-0.20% oxygen by weight. Accordingly, the alloy exhibits reduced hydrogen absorption and improved corrosion resistance and may be used to farm a fuel assembly component.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Yang-Pi Lin, David W. White, Daniel R. Lutz
  • Publication number: 20100091934
    Abstract: There is provided a fuel rod assembly comprising a first component of a zirconium-based material. The first component is in contact with or is located adjacent to a second component of a material different from the zirconium-based material, e.g. a nickel-based or iron-based alloy. A coating is disposed on an outer surface of the first component, which is effective to reduce an electrochemical corrosion potential difference between the first component and the second component relative to an electrochemical corrosion potential difference between the first component and the second component without the coating.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 15, 2010
    Inventors: Young Jin Kim, Dennis Michael Gray, David William White, Yang-Pi Lin, Todd Charles Curtis, Charles Beaty Patterson
  • Publication number: 20100014624
    Abstract: Example embodiments are directed to providing a thin, adherent coating on the surfaces of nuclear reactor components, which are known to cause increased corrosion on adjacent zirconium alloy structures, and methods of reducing the increased corrosion. Example embodiments include coatings being structurally bonded to components such that the difference in the corrosion potential between a coated component and a zirconium alloy component is less than that between a component without the coating and the zirconium alloy component.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Inventors: Daniel R. Lutz, Young Jin Kim, Yang-Pi Lin