Patents by Inventor Yang Rao

Yang Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7894643
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area and at least one bond pad adjacent thereto, and a flexible circuit coupled to the IC finger sensor. The flexible circuit may include a flexible layer covering both the finger sensing area and the at least one bond pad, and at least one conductive trace carried by the flexible layer and coupled to the at least one bond pad. The flexible layer may permit finger sensing therethrough. The flexible circuit may include at least one connector portion extending beyond the finger sensing area and the at least one bond pad. For example, the connector portion may include a tab connector portion and/or a ball grid array connector portion. A fill material, such as an epoxy, may be provided between the IC finger sensor and the flexible circuit.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: February 22, 2011
    Assignee: Authentec, Inc.
    Inventors: Dale R. Setlak, Matthew M. Salatino, Philip J. Spletter, Yang Rao
  • Patent number: 7599532
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: October 6, 2009
    Assignee: Authentec, Inc.
    Inventors: Dale R. Setlak, Matthew M. Salatino, Philip J. Spletter, Yang Rao
  • Patent number: 7474189
    Abstract: A circuit board having an embedded inductor and a process for making the circuit board is provided. In general, the process begins by providing a core structure including a dielectric core layer and a first metal layer on a top surface of the dielectric core layer. The first metal layer is etched to form first inductor windings. A material, such as an epoxy material, including magnetic filler material is deposited over the first inductor windings. Thereafter, a prepreg layer is placed over and attached to the material deposited over the first inductor windings to form the circuit board having the embedded inductor.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: January 6, 2009
    Assignee: RF Micro Devices, Inc.
    Inventors: David Dening, Steve Dorn, Milind Shah, Yang Rao, Michael Kay, Jon Jorgenson
  • Publication number: 20090003664
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection.
    Type: Application
    Filed: September 8, 2008
    Publication date: January 1, 2009
    Applicant: AuthenTec, Inc.
    Inventors: Dale R. Setlak, Matthew M. Salatino, Philip J. Spletter, Yang Rao
  • Patent number: 7424136
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: September 9, 2008
    Assignee: Authentec, Inc.
    Inventors: Dale R. Setlak, Matthew M. Salatino, Philip J. Spletter, Yang Rao
  • Publication number: 20070122013
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area, an IC carrier having a cavity receiving the finger sensing IC therein and having at least one beveled upper edge, and a frame surrounding at least a portion of an upper perimeter of the IC carrier and having at least one inclined surface corresponding to the at least one beveled upper edge of the IC carrier. The finger sensor may also include a biasing member for biasing the IC carrier into alignment within the frame. The biasing member may include at least one resilient body for biasing the IC carrier upward within the frame. In other embodiments, the finger sensor may include an IC carrier having a cavity receiving the finger sensing IC therein and having at least one laterally extending projection.
    Type: Application
    Filed: October 18, 2006
    Publication date: May 31, 2007
    Applicant: AuthenTec, Inc.
    Inventors: Dale SETLAK, Matthew Salatino, Phillip Spletter, Yang Rao
  • Publication number: 20070086634
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area and at least one bond pad adjacent thereto, and a flexible circuit coupled to the IC finger sensor. More particularly, the flexible circuit may include a flexible layer, and at least one conductive trace carried thereby and coupled to the at least one bond pad. The sensor may also include at least one Electrostatic Discharge (ESD) electrode carried by the flexible layer. The ESD electrode may be positioned adjacent a beveled edge, for example, of an IC carrier and thereby exposed through a small gap between an adjacent portion of a frame.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 19, 2007
    Applicant: AuthenTec, Inc.
    Inventors: Dale Setlak, Matthew Salatino, Philip Spletter, Yang Rao
  • Publication number: 20070086630
    Abstract: A finger sensor may include a finger sensing integrated circuit (IC) having a finger sensing area and at least one bond pad adjacent thereto, and a flexible circuit coupled to the IC finger sensor. The flexible circuit may include a flexible layer covering both the finger sensing area and the at least one bond pad, and at least one conductive trace carried by the flexible layer and coupled to the at least one bond pad. The flexible layer may permit finger sensing therethrough. The flexible circuit may include at least one connector portion extending beyond the finger sensing area and the at least one bond pad. For example, the connector portion may include a tab connector portion and/or a ball grid array connector portion. A fill material, such as an epoxy, may be provided between the IC finger sensor and the flexible circuit.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 19, 2007
    Applicant: AuthenTec, Inc.
    Inventors: Dale Setlak, Matthew Salatino, Phillip Spletter, Yang Rao
  • Patent number: 6996892
    Abstract: A circuit board having an embedded inductor and a process for making the circuit board is provided. In general, the process begins by providing a core structure including a dielectric core layer and a first metal layer on a top surface of the dielectric core layer. The first metal layer is etched to form first inductor windings. A material, such as an epoxy material, including magnetic filler material is deposited over the first inductor windings. Thereafter, a prepreg layer is placed over and attached to the material deposited over the first inductor windings to form the circuit board having the embedded inductor.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: February 14, 2006
    Assignee: RF Micro Devices, Inc.
    Inventors: David Dening, Steve Dorn, Milind Shah, Yang Rao, Michael Kay, Jon Jorgenson
  • Patent number: 6864306
    Abstract: Polymer composites and methods of making the polymer composites are presented. A representative polymer composite includes a polymer resin and a conductive material, wherein the polymer composite is characterized by a dielectric constant greater the 200. A representative method of making the polymer composite can be broadly summarized by the following steps: providing a polymer resin and a conductive material; mixing the polymer resin and the conductive material; and forming the polymer composite, wherein the polymer composite is characterized by a dielectric constant greater than 200.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 8, 2005
    Assignee: Georgia Tech Research Corporation
    Inventors: Yang Rao, Ching-Ping Wong, Jianwen Xu
  • Patent number: 6544651
    Abstract: The present invention is directed to polymer-ceramic composites having high dielectric constants formed using polymers containing a metal acetylacetonate (acacs) curing catalyst. In particular, it has been discovered that 5 weight percent Co(III) acac can increase the dielectric constant of DER661 epoxy by about 60%. The high dielectric polymers are combined with fillers, preferably ceramic fillers, to form two phase composites having high dielectric constants. Composites having about 30 to about 90% volume ceramic loading and a high dielectric base polymer, preferably epoxy, have been discovered to have a dielectric constants greater than about 60. Composites having dielectric constants greater than about 74 to about 150 are also disclosed. Also disclosed are embedded capacitors with capacitance densities of at least 25 nF/cm2, preferably at least 35 nF/cm2, most preferably 50 nF/cm2. Methods to increase the dielectric constant of the two phase composites having high dielectric constants are also provided.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: April 8, 2003
    Assignee: Georgia Tech Research Corp.
    Inventors: Ching-Ping Wong, Yang Rao
  • Publication number: 20030006402
    Abstract: Polymer composites and methods of making the polymer composites are presented. A representative polymer composite includes a polymer resin and a conductive material, wherein the polymer composite is characterized by a dielectric constant greater the 200. A representative method of making the polymer composite can be broadly summarized by the following steps: providing a polymer resin and a conductive material; mixing the polymer resin and the conductive material; and forming the polymer composite, wherein the polymer composite is characterized by a dielectric constant greater than 200.
    Type: Application
    Filed: April 30, 2002
    Publication date: January 9, 2003
    Inventors: Yang Rao, C. P. Wong, Jianwen Xu
  • Publication number: 20020016396
    Abstract: The present invention is directed to polymer-ceramic composites having high dielectric constants formed using polymers containing a metal acetylacetonate (acacs) curing catalyst. In particular, it has been discovered that 5 weight percent Co(II) acac can increase the dielectric constant of DER661 epoxy by about 60%. The high dielectric polymers are combined with fillers, preferably ceramic fillers, to form two phase composites having high dielectric constants. Composites having about 30 to about 90% volume ceramic loading and a high dielectric base polymer, preferably epoxy, have been discovered to have a dielectric constants greater than about 60. Composites having dielectric constants greater than about 74 to about 150 are also disclosed. Also disclosed are embedded capacitors with capacitance densities of at least 25 nF/cm2, preferably at least 35 nF/cm2, most preferably 50 nF/cm2. Methods to increase the dielectric constant of the two phase composites having high dielectric constants are also provided.
    Type: Application
    Filed: May 18, 2001
    Publication date: February 7, 2002
    Inventors: C.P. Wong, Yang Rao