Patents by Inventor Yangqing Xu

Yangqing Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7081336
    Abstract: Dual nucleic acid probes with resonance energy transfer moieties are provided. In particular, fluorescent or luminescent resonance energy transfer moieties are provided on hairpin stem-loop molecular beacon probes that hybridize sufficiently near each other on a subject nucleic acid, e.g. mRNA, to generate an observable interaction. The invention also provides lanthanide chelate luminescent resonance energy transfer moieties on linear and stem-loop probes that hybridize sufficiently near each other on a subject nucleic acid to generate an observable interaction. The invention thereby provides detectable signals for rapid, specific and sensitive hybridization determination in vivo. The probes are used in methods of detection of nucleic acid target hybridization for the identification and quantification of tissue and cell-specific gene expression levels, including response to external stimuli, such as drug candidates, and genetic variations associated with disease, such as cancer.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: July 25, 2006
    Assignee: Georgia Tech Research Corporation
    Inventors: Gang Bao, Andrew Tsourkas, Yangqing Xu
  • Publication number: 20060127940
    Abstract: Dual nucleic acid probes with resonance energy transfer moieties are provided. In particular, fluorescent or luminescent resonance energy transfer moieties are provided on hairpin stem-loop molecular beacon probes that hybridize sufficiently near each other on a subject nucleic acid, e.g. mRNA, to generate an observable interaction. The invention also provides lanthanide chelate luminescent resonance energy transfer moieties on linear and stem-loop probes that hybridize sufficiently near each other on a subject nucleic acid to generate an observable interaction. The invention thereby provides detectable signals for rapid, specific and sensitive hybridization determination in vivo. The probes are used in methods of detection of nucleic acid target hybridization for the identification and quantification of tissue and cell-specific gene expression levels, including response to external stimuli, such as drug candidates, and genetic variations associated with disease, such as cancer.
    Type: Application
    Filed: February 2, 2006
    Publication date: June 15, 2006
    Applicant: Georgia Tech Research Corporation
    Inventors: Gang Bao, Andrew Tsourkas, Yangqing Xu
  • Publication number: 20030129611
    Abstract: Dual nucleic acid probes with resonance energy transfer moieties are provided. In particular, fluorescent or luminescent resonance energy transfer moieties are provided on hairpin stem-loop molecular beacon probes that hybridize sufficiently near each other on a subject nucleic acid, e.g. mRNA, to generate an observable interaction. The invention also provides lanthanide chelate luminescent resonance energy transfer moieties on linear and stem-loop probes that hybridize sufficiently near each other on a subject nucleic acid to generate an observable interaction. The invention thereby provides detectable signals for rapid, specific and sensitive hybridization determination in vivo. The probes are used in methods of detection of nucleic acid target hybridization for the identification and quantification of tissue and cell-specific gene expression levels, including response to external stimuli, such as drug candidates, and genetic variations associated with disease, such as cancer.
    Type: Application
    Filed: June 25, 2002
    Publication date: July 10, 2003
    Inventors: Gang Bao, Andrew Tsourkas, Yangqing Xu
  • Publication number: 20030108949
    Abstract: Filtration-based microarray chips are provided. The microarray chips comprise a random oriented microporous filtration substrate of charged cellulose esters, such as nitrocellulose, and a plurality of different analyte-specific capture molecules attached to the substrate in a microarray. The capture molecules can be proteins, antigens, monoclonal or polyclonal antibodies, or apatomers. In particular, apparati and methods for the detection of a subject analyte comprising multiple stacked filtration-based microarray chips are also provided. The filtration-based microarray chips permits a sensitive, specific, fast and high throughput assay that can be used to detect analytes associated with a disease.
    Type: Application
    Filed: July 3, 2002
    Publication date: June 12, 2003
    Inventors: Gang Bao, Yangqing Xu