Patents by Inventor Yankun Fu

Yankun Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256385
    Abstract: LED packages and related methods are provided. The LED packages can include a submount having a top and bottom surface and a plurality of top electrically conductive elements on the top surface of the submount. An LED can be disposed on one of the top electrically conductive elements. The LED can emit a dominant wavelength generally between approximately 600 nm and approximately 650 nm, and more particularly between approximately 610 nm and approximately 630 nm when an electrical signal is applied to the top electrically conductive elements. A bottom thermally conductive element can be provided on the bottom surface and is not in electrical contact with the top electrically conductive elements. A lens can be disposed over the LED. The LED packages can have improved lumen performances, lower thermal resistances, improved efficiencies, and longer operational lifetimes.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 9, 2019
    Assignee: Cree, Inc.
    Inventors: Jeffrey Carl Britt, Yankun Fu
  • Patent number: 9159888
    Abstract: Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: October 13, 2015
    Assignee: Cree, Inc.
    Inventors: Ashay Chitnis, James Ibbetson, Bernd Keller, David T. Emerson, John Edmond, Michael J. Bergmann, Jasper S. Cabalu, Jeffrey C. Britt, Arpan Chakraborty, Eric Tarsa, Yankun Fu
  • Patent number: 9024349
    Abstract: Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: May 5, 2015
    Assignee: Cree, Inc.
    Inventors: Ashay Chitnis, James Ibbetson, Arpan Chakraborty, Eric J. Tarsa, Bernd Keller, James Seruto, Yankun Fu
  • Publication number: 20120187862
    Abstract: LED packages and related methods are provided. The LED packages can include a submount having a top and bottom surface and a plurality of top electrically conductive elements on the top surface of the submount. An LED can be disposed on one of the top electrically conductive elements. The LED can emit a dominant wavelength generally between approximately 600 nm and approximately 650 nm, and more particularly between approximately 610 nm and approximately 630 nm when an electrical signal is applied to the top electrically conductive elements. A bottom thermally conductive element can be provided on the bottom surface and is not in electrical contact with the top electrically conductive elements. A lens can be disposed over the LED. The LED packages can have improved lumen performances, lower thermal resistances, improved efficiencies, and longer operational lifetimes.
    Type: Application
    Filed: July 20, 2011
    Publication date: July 26, 2012
    Inventors: Jeffrey Carl Britt, Brandon Stanton, Yankun Fu
  • Patent number: 7943952
    Abstract: Methods for fabricating LED packages comprising providing an LED chip and covering at least part of it with a liquid medium. An optical element is provided and placed on the liquid medium. The optical element is allowed to settle to a desired level and the liquid medium is cured. LED packages are also disclosed that are fabricated using the disclosed methods.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: May 17, 2011
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Nicholas W. Medendorp, Jr., Peter Andrews, Yankun Fu, Michael Laughner, Ronan Letoquin
  • Patent number: 7777247
    Abstract: A mounting substrate for a semiconductor light emitting device includes a thermally conductive mounting block. The mounting block has, in a first face thereof, a cavity that is configured to mount a semiconductor light emitting device therein and to reflect light that is emitted by the semiconductor light emitting device that is mounted therein away from the cavity. A conductive lead inserted into the mounting block extends into the cavity. The conductive lead is electrically isolated from the mounting block and has an exposed contact portion in the cavity. The conductive lead may be a plurality of conductive leads each having an exposed contact portion at different locations in the cavity. Related packaging methods also may be provided.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: August 17, 2010
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Gerald H. Negley, Yankun Fu
  • Publication number: 20080179611
    Abstract: Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
    Type: Application
    Filed: September 7, 2007
    Publication date: July 31, 2008
    Inventors: Ashay Chitnis, James Ibbetson, Bernd Keller, David T. Emerson, John Edmond, Michael J. Bergmann, Jasper S. Cabalu, Jeffrey C. Britt, Arpan Chakraborty, Eric Tarsa, James Seruto, Yankun Fu
  • Publication number: 20080173884
    Abstract: Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
    Type: Application
    Filed: January 22, 2007
    Publication date: July 24, 2008
    Inventors: Ashay Chitnis, James Ibbetson, Arpan Chakraborty, Eric J. Tarsa, Bernd Keller, James Seruto, Yankun Fu
  • Publication number: 20080079017
    Abstract: Methods for fabricating LED packages comprising providing an LED chip and covering at least part of it with a liquid medium. An optical element is provided and placed on the liquid medium. The optical element is allowed to settle to a desired level and the liquid medium is cured. LED packages are also disclosed that are fabricated using the disclosed methods.
    Type: Application
    Filed: July 27, 2007
    Publication date: April 3, 2008
    Inventors: Ban Loh, Nicholas Medendorp, Peter Andrews, Yankun Fu, Micheal Laughner, Ronan Letoquin
  • Publication number: 20060157726
    Abstract: A mounting substrate for a semiconductor light emitting device includes a thermally conductive mounting block. The mounting block has, in a first face thereof, a cavity that is configured to mount a semiconductor light emitting device therein and to reflect light that is emitted by the semiconductor light emitting device that is mounted therein away from the cavity. A conductive lead inserted into the mounting block extends into the cavity. The conductive lead is electrically isolated from the mounting block and has an exposed contact portion in the cavity. The conductive lead may be a plurality of conductive leads each having an exposed contact portion at different locations in the cavity. Related packaging methods also may be provided.
    Type: Application
    Filed: January 14, 2005
    Publication date: July 20, 2006
    Inventors: Ban Loh, Gerald Negley, Yankun Fu
  • Publication number: 20040012027
    Abstract: A high efficiency, high yield solid state emitter package is disclosed exhibiting limited wavelength variations between batches and consistent wavelength and emission characteristics with operation. One embodiment of an emitter package according to the present invention comprises a semiconductor emitter and a conversion material. The conversion material is arranged to absorb substantially all of the light emitting from the semiconductor emitter and re-emit light at one or more different wavelength spectrums of light The conversion material is also arranged so that there is not an excess of conversion material to block the re-emitted light as it emits from the emitter package. The emitter package emitting light at one or more wavelength spectrums from the conversion material's re-emitted light.
    Type: Application
    Filed: June 12, 2003
    Publication date: January 22, 2004
    Applicant: CREE LIGHTING COMPANY
    Inventors: Bernd Keller, James Ibbetson, Yankun Fu, James Seruto, Jayesh Bharathan