Patents by Inventor Yann Schrodi

Yann Schrodi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210138444
    Abstract: Contemplated subject matter disclosed herein relates generally to organometallic olefin metathesis catalysts, and more particularly to longer-lived olefin metathesis catalysts supported by hemi-labile carbene ligands that bear an arm with one or more donor ligands, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds. The contemplated subject matter has utility in the fields of catalysis, organic synthesis, polymer chemistry, and industrial and fine chemicals chemistry. This contemplated subject matter serves to reduce the cost of olefin metathesis (OM) processes including in olefin metathesis polymerizations, conversion of vegetable oils into chemicals, and processes in the petrochemical industry. This contemplated subject matter reduces the cost of OM processes by providing OM catalysts that are longer-lived and lead to higher turnover numbers, hence requiring less catalyst to convert a given amount of substrate(s).
    Type: Application
    Filed: November 12, 2020
    Publication date: May 13, 2021
    Applicant: The California State University - Northridge
    Inventors: Yann Schrodi, Nicolas Cena, Joseph Yoon
  • Patent number: 10906861
    Abstract: Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: February 2, 2021
    Assignee: Wilmar Trading Pte Ltd
    Inventors: Timothy W. Abraham, Hiroki Kaido, Choon Woo Lee, Richard L. Pederson, Yann Schrodi, Michael John Tupy
  • Publication number: 20170022232
    Abstract: Synthetic methods for the in-situ formation of olefin metathesis catalysts are disclosed, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds.
    Type: Application
    Filed: April 20, 2016
    Publication date: January 26, 2017
    Inventor: Yann SCHRODI
  • Patent number: 9504997
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 29, 2016
    Assignee: MATERIA, INC.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Publication number: 20160185689
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Applicant: MATERIA, INC.
    Inventor: Yann Schrodi
  • Patent number: 9273081
    Abstract: Synthetic methods for the in-situ formation of olefin metathesis catalysts are disclosed, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 1, 2016
    Inventor: Yann Schrodi
  • Patent number: 9255117
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 9, 2016
    Assignee: MATERIA, INC.
    Inventor: Yann Schrodi
  • Patent number: 9238709
    Abstract: The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 19, 2016
    Assignees: MATERIA, INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Thay Ung, Yann Schrodi, Mark S. Trimmer, Andrew Hejl, Daniel Sanders, Robert H. Grubbs
  • Publication number: 20150307438
    Abstract: Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 29, 2015
    Applicant: ELEVANCE RENEWABLE SCIENCES, INC.
    Inventors: Timothy W. Abraham, Hiroki Kaido, Choon Woo Lee, Richard L. Pederson, Yann Schrodi, Michael John Tupy
  • Publication number: 20150299235
    Abstract: Synthetic methods for the in-situ formation of olefin metathesis catalysts are disclosed, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds.
    Type: Application
    Filed: January 27, 2015
    Publication date: October 22, 2015
    Inventor: Yann SCHRODI
  • Patent number: 9139605
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: September 22, 2015
    Inventor: Yann Schrodi
  • Patent number: 9120742
    Abstract: Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: September 1, 2015
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Timothy W. Abraham, Hiroki Kaido, Choon Woo Lee, Richard L. Pederson, Yann Schrodi, Michael John Tupy
  • Publication number: 20150141603
    Abstract: The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.
    Type: Application
    Filed: September 26, 2014
    Publication date: May 21, 2015
    Inventors: Thay UNG, Yann SCHRODI, Mark S. TRIMMER, Andrew HEJL, Daniel SANDERS, Robert H. GRUBBS
  • Publication number: 20150094481
    Abstract: The invention is directed to methods of making organic compounds by metathesis and hydrocyanation. Hydrocyanation functions to introduce a nitrile group into the organic compound. The nitrile group may be converted into an amine group, an aldehyde group, an alcohol group, or a carboxylic acid group. The method of the invention may be used, for example, to make industrial important organic compounds such as diacids, diesters, acid-amines, acid-alcohols, acid-nitriles, ester-amines, ester-alcohols, and ester-nitriles.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 2, 2015
    Applicant: ELEVANCE RENEWABLE SCIENCES, INC.
    Inventors: Timothy W. Abraham, Hiroki Kaido, Choon Woo Lee, Richard L. Pederson, Yann Schrodi, Michael John Tupy, Alexandre A. Pletnev
  • Publication number: 20150018559
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Application
    Filed: May 8, 2014
    Publication date: January 15, 2015
    Applicant: MATERIA, INC.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Patent number: 8895771
    Abstract: The invention is directed to methods of making organic compounds by metathesis and hydrocyanation. The method of the invention may be used, for example, to make industrial important organic compounds such as diacids, diesters, acid-amines, acid-alcohols, acid-nitriles, ester-amines, ester-alcohols, and ester-nitriles.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: November 25, 2014
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Timothy W. Abraham, Hiroki Kaido, Choon Woo Lee, Richard L. Pederson, Yann Schrodi, Michael John Tupy, Alexandre A. Pletnev
  • Patent number: 8871879
    Abstract: The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 28, 2014
    Assignees: Materia, Inc., California Institute of Technology
    Inventors: Thay Ung, Yann Schrodi, Mark S. Trimmer, Andrew Hejl, Daniel Sanders, Robert H. Grubbs
  • Publication number: 20140200382
    Abstract: This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Application
    Filed: August 13, 2013
    Publication date: July 17, 2014
    Applicant: MATERIA, INC.
    Inventor: Yann SCHRODI
  • Patent number: 8754249
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 17, 2014
    Assignee: Materia, Inc.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Patent number: 8614344
    Abstract: Disclosed are improved methods for conducting metathesis utilizing polyunsaturated fatty acid compositions (e.g., polyunsaturated fatty acid polyol esters, polyunsaturated fatty acids, polyunsaturated fatty esters, and mixtures), such as those found in naturally occurring oils and fats, as the starting material. The inventive methods involve hydrogenation of polyunsaturated fatty acid compositions prior to metathesis, thereby providing partially-hydrogenation compositions having a relatively higher amount of monounsaturated fatty acid species. The partially hydrogenated composition can then be subjected to metathesis to provide a metathesis product composition containing industrially useful compounds.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: December 24, 2013
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Hiroki Kaido, Michael John Tupy, Richard L. Pederson, Yann Schrodi