Patents by Inventor Yannick C. Morel

Yannick C. Morel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220173568
    Abstract: The system and method of using an ultra-short pulse mid and long wave infrared laser. The system is seeded with a 2 ?m laser source having a pulse duration in the femtosecond range. The beam is stretched, to increase the pulse duration, and the beam is amplified, to increase an energy level of the laser beam. Both mid wave IR and long wave IR seed beams are first generated, and then amplified via one or more optical parametric chirped-pulse amplification stages. A compressor may be used to compress one or more of the output beams to achieve high peak power and controllable pulse duration in the output beams. The output beams may then be used to create atmospheric or material effects at km range.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Applicant: BAE SYSTEMS Information and Electronic Systems Integration Inc.
    Inventors: Peter A. Budni, Alan R. Enman, Yannick C. Morel
  • Patent number: 11349276
    Abstract: The system and method of using an ultra-short pulse mid and long wave infrared laser. The system is seeded with a 2 ?m laser source having a pulse duration in the femtosecond range. The beam is stretched, to increase the pulse duration, and the beam is amplified, to increase an energy level of the laser beam. Both mid wave IR and long wave IR seed beams are first generated, and then amplified via one or more optical parametric chirped-pulse amplification stages. A compressor may be used to compress one or more of the output beams to achieve high peak power and controllable pulse duration in the output beams. The output beams may then be used to create atmospheric or material effects at km range.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 31, 2022
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Peter A. Budni, Alan R. Enman, Yannick C. Morel
  • Patent number: 10859503
    Abstract: The system and method for enhancing and suppressing radio frequency (RF) emissions in a laser induced plasma system using a second laser. A first igniter laser is used at short pulse widths and a second heater laser is used at longer pulse widths. By varying the energy of the heater laser and/or the timing of the arrival of the heater laser with respect to the igniter laser suppression and/or enhancement of the radio frequency (RF) emission from the induced plasma system is possible.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 8, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Peter A. Budni, Peter A. Ketteridge, Michael L. Lemons
  • Publication number: 20200191721
    Abstract: The system and method for enhancing and suppressing radio frequency (RF) emissions in a laser induced plasma system using a second laser. A first igniter laser is used at short pulse widths and a second heater laser is used at longer pulse widths. By varying the energy of the heater laser and/or the timing of the arrival of the heater laser with respect to the igniter laser suppression and/or enhancement of the radio frequency (RF) emission from the induced plasma system is possible.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventors: Yannick C. MOREL, Peter A. BUDNI, Peter A. KETTERIDGE, Michael L. LEMONS
  • Patent number: 10158172
    Abstract: A steerable high-power microwave beam array includes an optical sub-system comprising a laser and an optical time delay unit and a parallel set of RF time delay units. The optical system and/or the RF delay subsystem are utilized to precisely delay the pulses from the microwave antenna elements to provide steerable beam forming.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: December 18, 2018
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John E. McGeehan, Yannick C. Morel, Alexander B. Kozyrev, Simon Y. London, Clint J. Novotny, Somnath Sengupta, Yeuan-Ming Sheu, Mark T. Walter
  • Patent number: 9859178
    Abstract: A microwave module is described. The microwave module includes a base bracket, a window plate and a lid. The base bracket is configured to contain a photoconductive switch, a radio-frequency transformer and dielectric oil. The window plate, which is transparent to optical light, covers a first portion of the base bracket in which the photoconductive switch is located. The window plate is sealed to the base bracket. The lid, which includes a cutout to allow the radio-frequency transformer to pass through the lid, covers a second portion of the base bracket in which the radio-frequency transformer is located. The window plate is sealed to the base bracket, and the lid is sealed to the window plate, the base bracket and the radio-frequency transformer to contain the dielectric oil within the microwave module.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: January 2, 2018
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Sheila J. Konecke, Santos Nazario-Camacho, Clint J. Novotny, Keith K. Sturcken
  • Publication number: 20160126628
    Abstract: A steerable high-power microwave beam array includes an optical sub-system comprising a laser and an optical time delay unit and a parallel set of RF time delay units. The optical system and/or the RF delay subsystem are utilized to precisely delay the pulses from the microwave antenna elements to provide steerable beam forming.
    Type: Application
    Filed: October 13, 2015
    Publication date: May 5, 2016
    Inventors: John E. McGeehan, Yannick C. Morel, Alexander B. Kozyrev, Simon Y. London, Clint J. Novotny, Somnath Sengupta, Yeuan-Ming Sheu, Mark T. Walter
  • Publication number: 20160100495
    Abstract: A microwave module is described. The microwave module includes a base bracket, a window plate and a lid. The base bracket is configured to contain a photoconductive switch, a radio-frequency transformer and dielectric oil. The window plate, which is transparent to optical light, covers a first portion of the base bracket in which the photoconductive switch is located. The window plate is sealed to the base bracket. The lid, which includes a cutout to allow the radio-frequency transformer to pass through the lid, covers a second portion of the base bracket in which the radio-frequency transformer is located. The window plate is sealed to the base bracket, and the lid is sealed to the window plate, the base bracket and the radio-frequency transformer to contain the dielectric oil within the microwave module.
    Type: Application
    Filed: October 7, 2015
    Publication date: April 7, 2016
    Inventors: YANNICK C. MOREL, SHEILA J. KONECKE, SANTOS NAZARIO-CAMACHO, CLINT J. NOVOTNY, KEITH K. STURCKEN
  • Patent number: 9306371
    Abstract: A Multi-Cycle Digital High Power Microwave (MCD-HPM) source includes a microwave transmission line (MTL) to which a plurality electrically charged thin film transmission lines (TFTL's) are connected by switches. The switches are activated in sequence to generate a square wave at a microwave output frequency. The activation signal is controlled by a free space time delay, which can vary the timing and/or routing of the activation signal by modifying at least one free space element, thereby adjusting the switch activation timing and varying the output frequency. In embodiments, the switches are photo-conducting switches, the activation signal is a laser beam, and the switch timing is varied by reorienting and/or repositioning mirrors and/or other elements in the free space time delay. The elements can be manually adjusted, or mounted on motorized stages and automatically controlled. Optical amplifiers can be included to compensate for losses in the time delay elements.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 5, 2016
    Assignee: BAE Systems Information and Electronic Systems Intergration Inc.
    Inventors: Yannick C Morel, John E McGeehan, Clint J Novotny, Simon Y London
  • Patent number: 9140864
    Abstract: Disclosed is a method of coupling light into a power semiconductor device having a semiconductor structure with two or more layers. The power semiconductor device has multiple cells of functionally identical units linked by multiple interconnects. In each device unit, a patterned electrode layer is disposed on the surface of the semiconductor structure. The method includes illuminating the power semiconductor device by directing a light from a light source through the patterned electrode layer to form an enhanced light coupling with the semiconductor structure. The patterned electrode layer is configured to have a micron scaled grid pattern having multiple metal grids and aperture openings that is based on a distributed resistance model having two characteristic current decay lengths.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: September 22, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yeuan-Ming Sheu, Yannick C. Morel
  • Patent number: 9031106
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 12, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Publication number: 20140348191
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Patent number: 8831058
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 9, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Publication number: 20140059830
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Publication number: 20140035695
    Abstract: A Multi-Cycle Digital High Power Microwave (MCD-HPM) source includes a microwave transmission line (MTL) to which a plurality electrically charged thin film transmission lines (TFTL's) are connected by switches. The switches are activated in sequence to generate a square wave at a microwave output frequency. The activation signal is controlled by a free space time delay, which can vary the timing and/or routing of the activation signal by modifying at least one free space element, thereby adjusting the switch activation timing and varying the output frequency. In embodiments, the switches are photo-conducting switches, the activation signal is a laser beam, and the switch timing is varied by reorienting and/or repositioning mirrors and/or other elements in the free space time delay. The elements can be manually adjusted, or mounted on motorized stages and automatically controlled. Optical amplifiers can be included to compensate for losses in the time delay elements.
    Type: Application
    Filed: April 20, 2012
    Publication date: February 6, 2014
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, John E. McGeehan, Clint J. Novotny, Simon Y. London
  • Publication number: 20120288232
    Abstract: Disclosed is a method of coupling light into a power semiconductor device having a semiconductor structure with two or more layers. The power semiconductor device has multiple cells of functionally identical units linked by multiple interconnects. In each device unit, a patterned electrode layer is disposed on the surface of the semiconductor structure. The method includes illuminating the power semiconductor device by directing a light from a light source through the patterned electrode layer to form an enhanced light coupling with the semiconductor structure. The patterned electrode layer is configured to have a micron scaled grid pattern having multiple metal grids and aperture openings that is based on a distributed resistance model having two characteristic current decay lengths.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Inventors: Oved S. F. Zucker, Yeuan-Ming Sheu, Yannick C. Morel