Patents by Inventor Yanping Guo

Yanping Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6622970
    Abstract: A method and apparatus for autonomous navigation for deep space missions using the sun as the reference body and determining the spacecraft orbit based on observations made on the sun using onboard instruments. Two types of observation data, the direction of the spacecraft relative to the sun as a function of time and the optical Doppler shift due to the motion of the spacecraft relative to the sun, can be used for the spacecraft orbit determination. A dual imaging system which functions as a sun imager taking images of the sun against star backgrounds during the cruise phase and as a regular optical imager taking pictures of the targeting planetary body during the approaching phase is also described.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: September 23, 2003
    Assignee: The Johns Hopkins University
    Inventor: Yanping Guo
  • Patent number: 6600320
    Abstract: A unique time-domain electromagnetic system and data processing technique which, using low frequency electromagnetic fields, can localize, in three-dimensions, the position of buried metallic objects is disclosed. The measurement system uses time-domain electromagnetic techniques on a scanning frame similar to a X-Y plotter. The system collects magnetic data over a large area above the buried object. The spatial information of the field detected on the ground is then processed with an unique ‘nearfield holographic’ data processing method to reconstruct the field image of the buried object.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: July 29, 2003
    Assignee: The Johns Hopkins University
    Inventors: Yanping Guo, Harvey W. Ko, Carl V. Nelson, David M. White
  • Publication number: 20030006345
    Abstract: A method and apparatus for autonomous navigation for deep space missions using the sun as the reference body and determining the spacecraft orbit based on observations made on the sun using onboard instruments. Two types of observation data, the direction of the spacecraft relative to the sun as a function of time and the optical Doppler shift due to the motion of the spacecraft relative to the sun, can be used for the spacecraft orbit determination. A dual imaging system which functions as a sun imager taking images of the sun against star backgrounds during the cruise phase and as a regular optical imager taking pictures of the targeting planetary body during the approaching phase is also described.
    Type: Application
    Filed: May 1, 2002
    Publication date: January 9, 2003
    Inventor: Yanping Guo
  • Patent number: 6449084
    Abstract: An electrooptical deflector that overcomes conventional geometry limitations and can deflect an optical beam at high speed with high deflection angle and high resolution. It comprises an array of waveguide optical channels having an electrooptical layer sandwiched between a bottom and a top electrodes. Either the top electrode further comprises two sets of prism-shaped electrodes; or, the electrooptical layer further comprises two sets of prism-shaped spontaneous polarization domain regions. Linear phase differences are induced among a group of sub-light beams travelling in the individual optical channels. After leaving the individual optical channels, the sub-light beams are merged and the merged light beam is deflected along a direction depending on a voltage or a pair of voltages applied between the top and bottom electrodes. The optical defector requires one or a pair of low driving voltage(s) with a simple driving scheme.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: September 10, 2002
    Inventor: Yanping Guo
  • Publication number: 20020030492
    Abstract: A unique time-domain electromagnetic system and data processing technique which, using low frequency electromagnetic fields, can localize, in three-dimensions, the position of buried metallic objects is disclosed. The measurement system uses time-domain electromagnetic techniques on a scanning frame similar to a X-Y plotter. The system collects magnetic data over a large area above the buried object. The spatial information of the field detected on the ground is then processed with an unique ‘nearfield holographic’ data processing method to reconstruct the field image of the buried object.
    Type: Application
    Filed: August 13, 2001
    Publication date: March 14, 2002
    Inventors: Yanping Guo, Harvey W. Ko, Carl V. Nelson, David M. White
  • Patent number: 6084412
    Abstract: A unique time-domain electromagnetic system and data processing technique which, using low frequency electromagnetic fields, can localize, in three-dimensions, the position of buried metallic objects is disclosed. The measurement system uses time-domain electromagnetic techniques on a scanning frame similar to a X-Y plotter. The system collects magnetic data over a large area above the buried object. The spatial information of the field detected on the ground is then processed with an unique `nearfield holographic` data processing method to reconstruct the field image of the buried object.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: July 4, 2000
    Assignee: The Johns Hopkins University
    Inventors: Yanping Guo, Harvey W. Ko, Carl V. Nelson, David M. White
  • Patent number: 5379136
    Abstract: An electron beam addressed electro-optical (EO) light valve (EOLV) having a matrix of openings formed on and extending through an input conductive layer and further extends into an electrically insulating layer. A partially conductive coating is formed on the surface of each opening in the insulating layer, and has a substantially good electrical contact with the input conductive layer. An EO layer, formed of either a liquid crystal (LC) or a solid state EO crystal, is positioned on the optical output side of the insulating layer. Through the openings electrons from a scanning electron beam can reach and be directly deposited on the partially conductive coatings at a depth substantially close to the EO layer and substantially far away from the input conductive layer. The insulating material surrounding the openings in the insulating layer strictly prevents these deposited electrons from inter-opening motion.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: January 3, 1995
    Inventors: Shouxiang Hu, Yanping Guo