Patents by Inventor Yanwei Jia

Yanwei Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180002739
    Abstract: Modified double-stranded oligonucleotides that have terminal regions on each of their strands, that have a hybrid length of 6-50 nucleotides long, that have a melting temperature Tm of at least 32° C., and that include 2-4 modifying groups, each covalently attached to a different terminal region, preferably to a terminal nucleotide, said modifying groups being polycyclic substituents that do not have bulky portions that are non-planar, said modified oligonucleotide being capable of binding to the 5? exonuclease domains of DNA polymerases and, when included in a PCR or other primer-dependent DNA amplification reaction at a concentration, generally not more than 2000 nM, that is effective for at least one of the functions of suppressing mispriming, increasing polymerase selectivity against 3? terminal mismatches.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 4, 2018
    Inventors: Lawrence J. Wangh, John E. Rice, Nicholas Rice, Yanwei Jia
  • Patent number: 9808800
    Abstract: According to one aspect of the present disclosure, a control-engaged electrode-driving method for droplet actuation is provided. The method includes, a first voltage is provided to a first electrode for licking off a droplet. A second voltage is naturally discharged to a third voltage for maintaining a droplet movement. A fourth voltage is provided to the first electrode for accelerating the droplet. Naturally discharging from the second voltage to the third voltage and providing the fourth voltage to the first electrode are repeated. The first voltage is provided to a second electrode when a centroid of the droplet reaching a centroid of the first electrode. Naturally discharging from the second voltage to the third voltage and providing the fourth voltage to the second electrode are repeated.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: November 7, 2017
    Assignee: UNVERSITY OF MACAU
    Inventors: Tianlan Chen, Cheng Dong, Jie Gao, Yanwei Jia, Pui-In Mak, Mang-I Vai, Rui Paulo da Silva Martins
  • Patent number: 9758813
    Abstract: Modified double-stranded oligonucleotides that have terminal regions on each of their strands, that have a hybrid length of 6-50 nucleotides long, that have a melting temperature Tm of at least 32° C., and that include 2-4 modifying groups, each covalently attached to a different terminal region, preferably to a terminal nucleotide, said modifying groups being polycyclic substituents that do not have bulky portions that are non-planar, said modified oligonucleotide being capable of binding to the 5? exonuclease domains of DNA polymerases and, when included in a PCR or other primer-dependent DNA amplification reaction at a concentration, generally not more than 2000 nM, that is effective for at least one of the functions of suppressing mispriming, increasing polymerase selectivity against 3? terminal mismatches.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: September 12, 2017
    Assignee: Brandeis University
    Inventors: Lawrence J. Wangh, John E. Rice, Nicholas Rice, Yanwei Jia
  • Patent number: 9751083
    Abstract: According to one aspect of the present disclosure, a digital microfluidic system is provided. The digital microfluidic system includes a device, a control electronics, a field programmed gate array (FPGA), and a computer. The device includes a droplet on an electrode array, where the electrode array includes a plurality of electrodes. The control electronics connects to the device and provides an actuation pulse to the electrodes, where the control electronics generates a capacitance-derived frequency signal. The FPGA connects to the control electronics and collects the capacitance-derived frequency signal. The computer connects to the FPGA, the computer uses a frequency of the capacitance-derived frequency signal to calculate a precise droplet position and generates a duration voltage signal.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 5, 2017
    Assignee: UNIVERSITY OF MACAU
    Inventors: Jie Gao, Tianlan Chen, Cheng Dong, Yanwei Jia, Pui-In Mak, Mang-I Vai, Rui Paulo da Silva Martins
  • Publication number: 20170128943
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 11, 2017
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 9588025
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: March 7, 2017
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20160296935
    Abstract: According to one aspect of the present disclosure, a digital microfluidic system is provided. The digital microfluidic system includes a device, a control electronics, a field programmed gate array (FPGA), and a computer. The device includes a droplet on an electrode array, where the electrode array includes a plurality of electrodes. The control electronics connects to the device and provides an actuation pulse to the electrodes, where the control electronics generates a capacitance-derived frequency signal. The FPGA connects to the control electronics and collects the capacitance-derived frequency signal. The computer connects to the FPGA, the computer uses a frequency of the capacitance-derived frequency signal to calculate a precise droplet position and generates a duration voltage signal.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 13, 2016
    Inventors: Jie GAO, Tianlan CHEN, Cheng DONG, Yanwei JIA, Pui-In MAK, Mang-I VAI, Rui Paulo da Silva MARTINS
  • Publication number: 20160296934
    Abstract: According to one aspect of the present disclosure, a control-engaged electrode-driving method for droplet actuation is provided. The method includes, a first pulse is provided to a first electrode for kicking off a droplet till a centroid of the droplet reaching a centroid of the first electrode. A second pulse is provided to a second electrode when a leading edge of the droplet reaching the second electrode.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 13, 2016
    Inventors: Cheng DONG, Tianlan CHEN, Jie GAO, Yanwei JIA, Pui-In MAK, Mang-I VAI, Rui Paulo da Silva MARTINS
  • Publication number: 20160040242
    Abstract: This disclosure relates to amplification and detection of a rare variant or variants of a DNA sequence in an abundant variant of the sequence, such as detection of a low-level somatic mutations and minority alleles in an excess of normal nucleic acid target sequences.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 11, 2016
    Inventors: Yanwei Jia, Jesus A. Sanchez, John E. Rice, Lawrence J. Wangh
  • Publication number: 20150322503
    Abstract: Modified double-stranded oligonucleotides that have terminal regions on each of their strands, that have a hybrid length of 6-50 nucleotides long, that have a melting temperature Tm of at least 32° C., and that include 2-4 modifying groups, each covalently attached to a different terminal region, preferably to a terminal nucleotide, said modifying groups being polycyclic substituents that do not have bulky portions that are non-planar, said modified oligonucleotide being capable of binding to the 5? exonuclease domains of DNA polymerases and, when included in a PCR or other primer-dependent DNA amplification reaction at a concentration, generally not more than 2000 nM, that is effective for at least one of the functions of suppressing mispriming, increasing polymerase selectivity against 3? terminal mismatches.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 12, 2015
    Inventors: Lawrence J. Wangh, John E. Rice, Nicholas Rice, Yanwei Jia
  • Patent number: 9169514
    Abstract: This disclosure relates to amplification and detection of a rare variant or variants of a DNA sequence in an abundant variant of the sequence, such as detection of a low-level somatic mutations and minority alleles in an excess of normal nucleic acid target sequences.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: October 27, 2015
    Assignee: Brandeis University
    Inventors: Yanwei Jia, J. Aquiles Sanchez, John E. Rice, Lawrence J. Wangh
  • Publication number: 20150276562
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 1, 2015
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20150218625
    Abstract: This invention includes methods for analyzing single-stranded nucleic acid sequences, either RNA sequences or DNA sequences (ssDNA) utilizing dyes that fluoresce when associated with double strands, so-called DNA binding dyes or dsDNA-dyes. Methods according to this invention utilize a dsDNA-dye in combination with one or more hybridization probes that hybridize to a target nucleic acid sequence and that are labeled with a non-fluorescent quencher moiety, for example, a Black Hole quencher.
    Type: Application
    Filed: September 17, 2013
    Publication date: August 6, 2015
    Applicant: Brandeis University
    Inventors: John E. Rice, Yanwei Jia, Lawrence J. Wangh
  • Patent number: 9068699
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: June 30, 2015
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 9034605
    Abstract: Modified double-stranded oligonucleotides that have terminal regions on each of their strands, that have a hybrid length of 6-50 nucleotides long, that have a melting temperature Tm of at least 32° C.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: May 19, 2015
    Assignee: Brandeis University
    Inventors: Lawrence J. Wangh, John Rice, Nicholas Rice, Yanwei Jia
  • Publication number: 20140246098
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: November 4, 2013
    Publication date: September 4, 2014
    Applicants: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20140024033
    Abstract: This disclosure relates to amplification and detection of a rare variant or variants of a DNA sequence in an abundant variant of the sequence, such as detection of a low-level somatic mutations and minority alleles in an excess of normal nucleic acid target sequences.
    Type: Application
    Filed: December 1, 2011
    Publication date: January 23, 2014
    Applicant: BRANDEIS UNIVERSITY
    Inventors: Yanwei Jia, J. Aquiles Sanchez, John E. Rice, Lawrence J. Wangh
  • Patent number: 8592221
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: November 26, 2013
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20120198576
    Abstract: Embodiments of the invention are based upon the discovery that exposure of cleavage-stage embryos to a stress inducer, e.g. heat shock or chemical, renders the exposed embryos more sensitive to a secondary treatment with a stress inducer, e.g. heat shock or chemical inducer. Accordingly, the present invention is directed to methods for making embryos, embryonic cells arising from them, and animals and plants that are sensitized to stress, e.g. physiologic or chemical stressors. Methods of screening for inducers and inhibitors of stress using, as test model systems, embryonic cells, embryos, animals, and plants that are sensitized to stress are also disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: August 2, 2012
    Applicant: BRANDEIS UNIVERSITY
    Inventors: Lawrence J. Wangh, Cristina Hartshorn, Yanwei Jia
  • Publication number: 20120088275
    Abstract: Modified double-stranded oligonucleotides that have terminal regions on each of their strands, that have a hybrid length of 6-50 nucleotides long, that have a melting temperature Tm of at least 32° C.
    Type: Application
    Filed: March 11, 2010
    Publication date: April 12, 2012
    Applicant: BRANDEIS UNIVERSITY
    Inventors: Lawrence J. Wangh, John Rice, Nicholas Rice, Yanwei Jia