Patents by Inventor Yanyu Jin

Yanyu Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11783990
    Abstract: In an embodiment, an integrated circuit die includes a semiconductor substrate, patterned metal layers compiled over the semiconductor substrate, and a tapered multipath inductor formed in the patterned metal layers. The tapered multipath inductor includes, in turn, an inductor input terminal, an inductor output terminal, and N number of parallel inductor tracks electrically coupled between the inductor input terminal and the inductor output terminal. The parallel inductor tracks wind or wrap around an inductor centerline to define a plurality of multipath inductor windings including an innermost winding and an outermost winding. The parallel inductor tracks further vary in track width when progressing from the outermost winding to the innermost winding of the plurality of multipath inductor windings.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: October 10, 2023
    Assignee: NXP B.V.
    Inventors: Thomas Jan Hoen, Yanyu Jin, Anne Johan Annema, Jos Verlinden
  • Publication number: 20230317347
    Abstract: In an embodiment, an integrated circuit die includes a semiconductor substrate, patterned metal layers compiled over the semiconductor substrate, and a tapered multipath inductor formed in the patterned metal layers. The tapered multipath inductor includes, in turn, an inductor input terminal, an inductor output terminal, and N number of parallel inductor tracks electrically coupled between the inductor input terminal and the inductor output terminal. The parallel inductor tracks wind or wrap around an inductor centerline to define a plurality of multipath inductor windings including an innermost winding and an outermost winding. The parallel inductor tracks further vary in track width when progressing from the outermost winding to the innermost winding of the plurality of multipath inductor windings.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Thomas Jan Hoen, Yanyu Jin, Anne Johan Annema, Jos Verlinden
  • Patent number: 11018625
    Abstract: A frequency reference generator includes (i) an integrated frequency source having drive circuitry that drives a resonant (e.g., non-trimmable LC) tank to generate an oscillator signal, (ii) at least one temperature sensor that generates at least one measured temperature signal, and (iii) a frequency-adjustment circuit that adjusts the oscillator signal frequency to generate the frequency reference based on the measured temperature signal and a (e.g., sample-specific) mapping from temperature to a corresponding frequency-adjustment parameter (e.g., a divisor value for a fractional frequency divider). In some embodiments, a Colpitts oscillator generates the oscillator signal based on the measured temperature signal, where the Colpitts oscillator has voltage/temperature-compensation circuitry that compensates for variations in power supply voltage and operating temperature. Such frequency reference generators achieve substantial PVT insensitivity with as little as a single 1T-trim or even no trim at all.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 25, 2021
    Assignee: NXP B.V.
    Inventors: Alexander Sebastian Delke, Mark Stefan Oude Alink, Anne Johan Annema, Yanyu Jin, Jos Verlinden, Bram Nauta
  • Patent number: 10903790
    Abstract: An LC oscillator has a tank driver connected to cause a matched-resistance LC tank to oscillate. The LC tank has an inductor leg in parallel with a capacitor leg. The inductor leg has an explicit inductor having an implicit resistance level RL. The capacitor leg has an explicit capacitor having an implicit resistance level RC connected in series with an explicit resistor having an explicit resistance level RR, where RM=(RC+RR) is substantially equal to RL. The LC oscillator may have a non-trimmable LC tank and be part of a temperature-compensated frequency reference generator having standalone frequency adjustment circuitry that offers better than ±0.1% frequency accuracy (after single trim and batch calibration) over process, voltage, and temperature variations, and lifetime, which can serve as a low-cost replacement for a crystal oscillator for many applications.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 26, 2021
    Assignee: NXP B.V.
    Inventors: Yanyu Jin, Jos Verlinden, Maoqiang Liu