Patents by Inventor Yanzhong LI

Yanzhong LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11519641
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: December 6, 2022
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Cui Li, Yuhan Zhuang, Yiwei Cheng, Jiamin Shi, Yanzhong Li
  • Patent number: 11506424
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: November 22, 2022
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Cui Li, Yuhan Zhuang, Yiwei Cheng, Jiamin Shi, Yanzhong Li
  • Patent number: 11262124
    Abstract: A system for preparing subcooled liquid oxygen based on mixing of liquid oxygen and liquid nitrogen and then vacuum-pumping, including atmospheric-pressure saturated liquid nitrogen and oxygen tanks. An inlet of the liquid nitrogen tank communicates with pressurized gas, and an outlet is connected to an inlet a of a secondary subcooler. An inlet of the liquid oxygen tank communicates with the pressurized gas, and a first outlet is connected to an inlet b of the secondary subcooler. An outlet c of the secondary subcooler is connected to an inlet d of a primary subcooler. An outlet e of the primary subcooler is connected to a pumping-out device through a rewarming device. A second outlet of the liquid oxygen tank is connected to an inlet n of the primary subcooler. An outlet o of the primary subcooler is connected to an inlet r of the secondary subcooler.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: March 1, 2022
    Assignee: Xi'an Jiaotong University
    Inventors: Fushou Xie, Yanzhong Li, Jianhua Ren, Hongwei Mao
  • Publication number: 20210333022
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Application
    Filed: May 25, 2021
    Publication date: October 28, 2021
    Inventors: CUI LI, YUHAN ZHUANG, YIWEI CHENG, JIAMIN SHI, YANZHONG LI
  • Publication number: 20210325091
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Application
    Filed: May 25, 2021
    Publication date: October 21, 2021
    Inventors: CUI LI, YUHAN ZHUANG, YIWEI CHENG, JIAMIN SHI, YANZHONG LI
  • Publication number: 20210300758
    Abstract: A system for preparing subcooled liquid oxygen based on mixing of liquid oxygen and liquid nitrogen and then vacuum-pumping, including atmospheric-pressure saturated liquid nitrogen and oxygen tanks. An inlet of the liquid nitrogen tank communicates with pressurized gas, and an outlet is connected to an inlet a of a secondary subcooler. An inlet of the liquid oxygen tank communicates with the pressurized gas, and a first outlet is connected to an inlet b of the secondary subcooler. An outlet c of the secondary subcooler is connected to an inlet d of a primary subcooler. An outlet e of the primary subcooler is connected to a pumping-out device through a rewarming device. A second outlet of the liquid oxygen tank is connected to an inlet n of the primary subcooler. An outlet o of the primary subcooler is connected to an inlet r of the secondary subcooler.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 30, 2021
    Inventors: Fushou XIE, Yanzhong LI, Jianhua REN, Hongwei MAO
  • Patent number: 11047604
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: June 29, 2021
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Cui Li, Yuhan Zhuang, Yiwei Cheng, Jiamin Shi, Yanzhong Li
  • Publication number: 20210025624
    Abstract: An ejector-based cryogenic refrigeration system for cold energy recovery includes a first cryogenic refrigeration loop connected by a helium compressor and a cryogenic refrigerator and a second cryogenic refrigeration loop connected by the helium compressor, a regenerator, an ejector, a cold head of the cryogenic refrigerator, an end to be cooled and a pressure regulating valve. The cryogenic refrigerator is separated from the end to be cooled. The cryogenic refrigerator and the cryogenic helium cooling loop share a helium compressor, which improves the utilization efficiency of the device and reduces the cost. The ejector allows a part of fluids to circulate in the cryogenic loop, so as to maintain a required cryogenic condition, recover the pressure of the fluids, reduce the gas flowing though the compressor loop, and thus reduce the power consumption of the compressor.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 28, 2021
    Inventors: CUI LI, YUHAN ZHUANG, YIWEI CHENG, JIAMIN SHI, YANZHONG LI
  • Patent number: 10006844
    Abstract: A method of initiating a fluid density measurement includes generating a prime resonance of a test fixture by a startup circuit. The method of initiating a fluid density measurement includes closing a feedback loop in response to generating the prime resonance. The method of initiating a fluid density measurement includes maintaining the prime resonance by closing the feedback loop.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: June 26, 2018
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Yury A. Bakhirkin, Alexander Joseph Esin, Yanzhong Li
  • Patent number: 9395718
    Abstract: A method incorporating an antenna and RF circuitry into the object acting as a substrate includes modeling the object as a three-dimensional object, and designing the antenna and RF circuitry for direct placement on the surface of the object. The step of designing is at least partially based on the size, three-dimensional shape, and material properties of the surface of the object acting as the substrate. The step of designing is preferably performed through use of an evolutionary optimizer implemented using parallel computing devices.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 19, 2016
    Assignee: Sciperio, Inc.
    Inventors: Kenneth H. Church, Robert M. Taylor, Michael J. Wilhelm, Hao Dong, Yanzhong Li
  • Publication number: 20160161386
    Abstract: A method of initiating a fluid density measurement includes generating a prime resonance of a test fixture by a startup circuit. The method of initiating a fluid density measurement includes closing a feedback loop in response to generating the prime resonance. The method of initiating a fluid density measurement includes maintaining the prime resonance by closing the feedback loop.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 9, 2016
    Inventors: Yury A. BAKHIRKIN, Alexander Joseph ESIN, Yanzhong LI