Patents by Inventor Yao-de Jhong

Yao-de Jhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11332830
    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of multiple functionalized graphene sheets having a first chemical functional group, multiple functionalized carbon nanotubes having a second chemical group functional group, or a combination of both, which are coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple functionalized graphene sheets contain single-layer or few-layer graphene sheets and/or the multiple functionalized carbon nanotubes contain single-walled or multiwalled carbon nanotubes, and wherein the multiple functionalized graphene sheets or functionalized carbon nanotubes are bonded to the polymer component surface with or without an adhesive resin.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: May 17, 2022
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10730070
    Abstract: A continuous process for producing a surface-metalized polymer article, comprising: (a) continuously immersing a polymer article into a graphene dispersion comprising multiple graphene sheets dispersed in a liquid medium for a period of immersion time and then retreating the polymer article from the dispersion, enabling deposition of graphene sheets onto a surface of the polymer article to form a graphene-attached polymer article; (b) continuously moving the graphene-attached polymer article into a drying or heating zone to enable bonding of graphene sheets to said surface to form a graphene-covered polymer article; and (c) continuously moving the graphene-covered polymer article into a metallization zone where a layer of a metal is chemically, physically, electrochemically or electrolytically deposited onto a surface of the graphene-covered polymer article to form the surface-metalized polymer article. Step (a) may be preceded by a surface treatment of the polymer article.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190292721
    Abstract: Provided is process for producing a surface-metalized fiber, yarn, or fabric, the process comprising: (a) Feeding a continuous fiber, yarn, or fabric from a feeder roller into a graphene deposition chamber containing therein a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in the first liquid medium; (b) Operating the graphene deposition chamber to deposit the graphene sheets and optional conductive filler to a surface of the fiber, yarn, or fabric for forming a graphene-coated fiber, yarn, or fabric; (c) Moving the graphene-coated fiber, yarn, or fabric into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated fiber, yarn, or fabric to obtain a surface-metalized fiber, yarn, or fabric; and (d) Operating a winding roller to collect the surface-metalized fiber, yarn, or fabric.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190292722
    Abstract: Provided is process for producing a surface-metalized fiber, yarn, or fabric, the process comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conductive filler dispersed in a first liquid medium, which is an adhesive monomer or contains a liquid adhesive monomer or oligomer dissolved in a solvent; (b) feeding a continuous fiber, yarn, or fabric from a feeder roller into a deposition zone, wherein the graphene dispersion is dispensed to deposit the graphene sheets to a surface of the fiber, yarn, or fabric; (c) moving the graphene-coated fiber, yarn, or fabric into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated fiber, yarn, or fabric to obtain a surface-metalized fiber, yarn, or fabric; and (d) operating a winding roller to collect the surface-metalized fiber, yarn, or fabric.
    Type: Application
    Filed: April 2, 2018
    Publication date: September 26, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190292720
    Abstract: Provided is surface-metalized fiber, yarn, or fabric comprising: (a) a fiber, yarn, or fabric having a surface; (b) a graphene layer having a thickness from 0.34 nm to 20 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to the surface, with or without using an adhesive resin, to form a graphene-coated fiber, yarn, or fabric; and (c) a metal layer comprising a plated metal deposited on the graphene-coated fiber, yarn, or fabric; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190292676
    Abstract: Provided is process for producing a surface-metalized polymer film, the process comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium, which is an adhesive monomer/oligomer or contains a liquid adhesive monomer/oligomer/polymer dissolved in a solvent; (b) feeding a continuous polymer film from a feeder roller into a deposition zone, wherein the graphene dispersion is dispensed to deposit the graphene sheets to a surface of the polymer film; (c) moving the graphene-coated polymer film into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated polymer film to obtain a surface-metalized polymer film; and (d) operating a winding roller to collect the surface-metalized polymer film.
    Type: Application
    Filed: April 2, 2018
    Publication date: September 26, 2019
    Applicant: Nanotek instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190292675
    Abstract: Provided is a process for producing a surface-metalized polymer film, comprising: (a) feeding a continuous polymer film from a feeder into a graphene deposition chamber which accommodates a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in this first liquid medium; (b) operating the graphene deposition chamber to deposit the graphene sheets and optional conductive filler to at least a primary surface of the polymer film for forming a graphene-coated polymer film; (c) moving the graphene-coated film into a metallization chamber which accommodates a plating solution for plating a layer of a desired metal onto the graphene-coated polymer film to obtain a surface-metalized polymer film; and (d) operating a winding roller to collect the surface-metalized polymer film.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190283377
    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of combined multiple graphene sheets and a conductive filler (e.g. metal nanowires or carbon nanofibers) coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene, and wherein the multiple graphene sheets and conductive filler are bonded to the polymer component surface with or without an adhesive resin.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190284712
    Abstract: Provided is a surface-metalized polymer film comprising: (a) a polymer film having a thickness from 10 nm to 5 mm and two primary surfaces; (b) a graphene layer having a thickness from 0.34 nm to 50 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to at least one of the two primary surfaces with or without using an adhesive resin; and (c) a metal layer comprising a plated metal deposited on the graphene layer; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190283379
    Abstract: Provided is a surface-metalized polymer film comprising: (a) a polymer film having a thickness from 10 nm to 5 mm and two primary surfaces; (b) a graphene layer having a thickness from 0.34 nm to 50 ?m and comprising multiple graphene sheets and an optional conducive filler coated on or bonded to at least one of the two primary surfaces with or without using an adhesive resin; and (c) a metal layer comprising a plated metal deposited on the graphene layer; wherein the graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. This film exhibits a high scratch resistance, strength, hardness, electrical conductivity, thermal conductivity, light reflectivity, gloss, etc.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190283378
    Abstract: Provided is an apparatus for manufacturing a surface-metalized polymer article, the apparatus comprising: (a) a graphene deposition chamber that accommodates a graphene dispersion comprising multiple graphene sheets and an optional conducive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in the first liquid medium, wherein the graphene deposition chamber is operated to deposit the graphene sheets and optional conductive filler to a surface of at least a polymer component for forming at least a graphene-coated polymer component; and (b) a metallization chamber that accommodates a plating solution for plating a layer of a desired metal on the at least a graphene-coated polymer component to obtain the surface-metalized polymer article.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190143369
    Abstract: Provided is a process for producing a surface-metalized polymer article, comprising: (a) preparing a graphene dispersion comprising multiple graphene sheets and an optional conductive filler dispersed in a first liquid medium, which is an adhesive monomer or contains a liquid adhesive monomer, oligomer or polymer dissolved in a solvent; (b) bringing a polymer article into a graphene deposition zone, wherein the graphene dispersion is sprayed, painted, coated, cast, or printed to deposit graphene sheets and optional conductive filler to a surface of the polymer article; and (c) moving the graphene-coated polymer article into a metallization chamber which accommodates a plating solution therein for plating a layer of a desired metal onto the graphene-coated polymer article to obtain a surface-metalized polymer article and retreating the surface-metalized polymer article from the metallization chamber.
    Type: Application
    Filed: April 2, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190143367
    Abstract: A continuous process for producing a surface-metalized polymer article, comprising: (a) continuously immersing a polymer article into a graphene dispersion comprising multiple graphene sheets dispersed in a liquid medium for a period of immersion time and then retreating the polymer article from the dispersion, enabling deposition of graphene sheets onto a surface of the polymer article to form a graphene-attached polymer article; (b) continuously moving the graphene-attached polymer article into a drying or heating zone to enable bonding of graphene sheets to said surface to form a graphene-covered polymer article; and (c) continuously moving the graphene-covered polymer article into a metallization zone where a layer of a metal is chemically, physically, electrochemically or electrolytically deposited onto a surface of the graphene-covered polymer article to form the surface-metalized polymer article. Step (a) may be preceded by a surface treatment of the polymer article.
    Type: Application
    Filed: March 7, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190143656
    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of combined multiple graphene sheets and an optional conductive filler (e.g. metal nanowires or carbon nanofibers) coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene, and wherein the multiple graphene sheets and conductive filler are bonded to the polymer component surface with or without an adhesive resin. In certain embodiments, this article is selected from a vehicle component, an electronic appliance, an electronic device, a food packaging film or bag, a protective clothing, an antistatic film or bag, a susceptor in microwave cooking, a blanket, an anti-reflection accessary, a toy, a product label, a mailer, a sports card, a greeting card, a solar control window film, or a stamping foil.
    Type: Application
    Filed: March 19, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190144621
    Abstract: Provided is a surface-metalized polymer article, comprising a polymer component, a first layer of multiple graphene sheets coated on a surface of the polymer component, and a second layer of a plated metal chemically, electrochemically or electrolytically deposited on the first layer, wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 25% by weight of non-carbon elements wherein the non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof and wherein multiple graphene sheets are bonded to the polymer component surface with or without an adhesive resin and the first layer has a thickness from 0.34 nm to 30 ?m.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z Jang
  • Publication number: 20190145007
    Abstract: Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of multiple functionalized graphene sheets having a first chemical functional group, multiple functionalized carbon nanotubes having a second chemical group functional group, or a combination of both, which are coated on the polymer component surface, and a second layer of a plated metal deposited on the first layer, wherein the multiple functionalized graphene sheets contain single-layer or few-layer graphene sheets and/or the multiple functionalized carbon nanotubes contain single-walled or multiwalled carbon nanotubes, and wherein the multiple functionalized graphene sheets or functionalized carbon nanotubes are bonded to the polymer component surface with or without an adhesive resin.
    Type: Application
    Filed: March 15, 2018
    Publication date: May 16, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Shaio-yen Lee, Yao-de Jhong, Aruna Zhamu, Bor Z. Jang