Patents by Inventor Yao-Jen Chang

Yao-Jen Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10748034
    Abstract: A method for training a learning-based medical scanner including (a) obtaining training data from demonstrations of scanning sequences, and (b) learning the medical scanner's control policies using deep reinforcement learning framework based on the training data.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Kumar Singh, Klaus J. Kirchberg, Kai Ma, Yao-jen Chang, Terrence Chen
  • Publication number: 20200258243
    Abstract: Machine learning is used to train a network to estimate a three-dimensional (3D) body surface and body regions of a patient from surface images of the patient. The estimated 3D body surface of the patient is used to determine an isocenter of the patient. The estimated body regions are used to generate heatmaps representing visible body region boundaries and unseen body region boundaries of the patient. The estimation of 3D body surfaces, the determined patient isocenter, and the estimated body region boundaries may assist in planning a medical scan, including automatic patient positioning.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventors: Yao-jen Chang, Jiangping Wang, Vivek Kumar Singh, Ruhan Sa, Ankur Kapoor, Andreas Wimmer
  • Patent number: 10727350
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for weaker and softer dielectric layer. The insert layer may be applied between two weaker dielectric layers or the insert layer may be used with a single layer of dielectric material. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Jen Chang, Chih-Chien Chi, Chen-Yuan Kao, Hung-Wen Su, Kai-Shiang Kuo, Po-Cheng Shih, Jun-Yi Ruan
  • Patent number: 10725060
    Abstract: A method of tube slot localization is provided using a tray coordinate system and a camera coordinate system. The method includes receiving, a series of images from at least one camera of a tray comprising tube slots arranged in a matrix of rows and columns. Each tube slot is configured to receive a sample tube. The method also includes automatically detecting fiducial markers disposed on cross sectional areas between the tube slots on the tray and receiving an encoder value indicating when each row of the tray is substantially at the center of the camera's field of view. The method further includes determining calibration information to provide mapping of locations from the tray coordinate system to locations from the camera coordinate system and automatically aligning the tray based on the encoder value and calibration information.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: July 28, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Patrick Wissmann, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Publication number: 20200232908
    Abstract: Embodiments provide a method of using image-based tube top circle detection based on multiple candidate selection to localize the tube top circle region in input images. According to embodiments provided herein, the multi-candidate selection enhances the robustness of tube circle detection by making use of multiple views of the same tube to improve the robustness of tube top circle detection. With multiple candidates extracted from images under different viewpoints of the same tube, the multi-candidate selection algorithm selects an optimal combination among the candidates and provides more precise measurement of tube characteristics. This information is invaluable in an IVD environment in which a sample handler is processing the tubes and moving the tubes to analyzers for testing and analysis.
    Type: Application
    Filed: June 25, 2018
    Publication date: July 23, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Stefan Kluckner, Benjamin S. Pollack, Terrence Chen
  • Patent number: 10716530
    Abstract: An automation method is disclosed for an X-ray tube scanner having an X-ray tube and an X-ray detector. The method allows the X-ray tube scanner to detect the X-ray detector's plane with an object to be imaged placed on the X-ray detector; determine a boundary box of the object to be imaged on the X-ray detector; determine the object's center position and orientation on the X-ray detector's plane; transfer the object's center position from the object's coordinate system to the X-ray tube's coordinate system; and estimate the X-ray tube control parameters for aligning the X-ray field emitted from the X-ray tube's collimator to the object's center position and the object's orientation on the X-ray detector.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: July 21, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Yao-jen Chang, Birgi Tamersoy, Susanne Oepping, Ralf Nanke, Terrence Chen
  • Patent number: 10695613
    Abstract: A resistance sensing apparatus for exercise equipment includes a resistance adjusting assembly and a sensing unit. The resistance adjusting assembly includes an adjusting unit, a tubular member disposed above the adjusting unit, and an adjusting shaft mounted in the tubular member. The adjusting shaft has a first threaded portion and a second threaded portion formed thereon. The adjusting unit is threaded onto the first threaded portion. The sensing unit includes a second threaded member threadedly engaged to the second threaded portion, a first sensing member is disposed on one of the adjusting unit and the second threaded member, the second sensing member is disposed on the other of the adjusting unit and the second threaded member. By adjusting the adjusting unit and the second threaded member, a distance of the first and the second sensing member is changed and generates corresponding signals.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: June 30, 2020
    Assignee: Peleton Interactive, Inc.
    Inventors: Yao-Jen Chang, Chen-Fei Yang
  • Patent number: 10675504
    Abstract: A lateral glide elliptical exercise apparatus includes a frame defining a center line, a pair of pedal units disposed at two opposite lateral sides relative to the center line each including a pivoting block and a pedal shaft pivotally connected to the pivoting block, a damping unit for providing a damping resistance to the pedal units, and a pair of gliding guide units respectively mounted at the frame, each gliding guide unit includes a gliding guide, an actuation block and a linkage arranged so that the actuation block can be driven by the associating linkage to slide smoothly between an inner end portion and an outer end portion of the associating gliding guide when the pedal units are being alternately pedaled by the user.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 9, 2020
    Assignee: REXON INDUSTRIAL CORP., LTD.
    Inventors: Yao-Jen Chang, Chen-Fei Yang
  • Publication number: 20200167591
    Abstract: Methods for image-based detection of the tops of sample tubes used in an automated diagnostic analysis system may be based on a convolutional neural network to pre-process images of the sample tube tops to intensify the tube top circle edges while suppressing the edge response from other objects that may appear in the image. Edge maps generated by the methods may be used for various image-based sample tube analyses, categorizations, and/or characterizations of the sample tubes to control a robot in relationship to the sample tubes. Image processing and control apparatus configured to carry out the methods are also described, as are other aspects.
    Type: Application
    Filed: June 25, 2018
    Publication date: May 28, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Stefan Kluckner, Benjamin S. Pollack, Terrence Chen
  • Publication number: 20200158745
    Abstract: A method of characterizing a serum and plasma portion of a specimen in regions occluded by one or more labels. The characterization may be used for Hemolysis, Icterus, and/or Lipemia, or Normal detection. The method captures one or more images of a labeled specimen container including a serum or plasma portion, processes the one or more images to provide segmentation data and identification of a label-containing region, and classifying the label-containing region with a convolutional neural network (CNN) to provide a pixel-by-pixel (or patch-by-patch) characterization of the label thickness count, which may be used to adjust intensities of regions of a serum or plasma portion having label occlusion. Optionally, the CNN can characterize the label-containing region as one of multiple pre-defined label configurations. Quality check modules and specimen testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 21, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Jiang Tian, Stefan Kluckner, Shanhui Sun, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
  • Publication number: 20200151878
    Abstract: A method of characterizing a serum and plasma portion of a specimen in regions occluded by one or more labels. The characterization method may be used to provide input to an HILN (H, I, and/or L, or N) detection method. The characterization method includes capturing one or more images of a labeled specimen container including a serum or plasma portion from multiple viewpoints, processing the one or more images to provide segmentation data including identification of a label-containing region, determining a closest label match of the label-containing region to a reference label configuration selected from a reference label configuration database, and generating a combined representation based on the segmentation information and the closest label match. Using the combined representation allows for compensation of the light blocking effects of the label-containing region. Quality check modules and testing apparatus and adapted to carry out the method are described, as are other aspects.
    Type: Application
    Filed: April 10, 2018
    Publication date: May 14, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Patrick Wissmann, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
  • Publication number: 20200151498
    Abstract: A method of characterizing a serum and plasma portion of a specimen in regions occluded by one or more labels. The characterization may be used for determining Hemolysis (H), Icterus (I), and/or Lipemia (L), or Normal (N) of a serum or plasma portion of a specimen. The method includes capturing one or more images of a labeled specimen container including a serum or plasma portion, processing the one or more images with a convolutional neural network to provide a determination of Hemolysis (H), Icterus (I), and/or Lipemia (L), or Normal (N). In further embodiments, the convolutional neural network can provide N-Class segmentation information. Quality check modules and testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Application
    Filed: April 10, 2018
    Publication date: May 14, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Shanhui SUN, Stefan KLUCKNER, Yao-Jen CHANG, Terrence CHEN, Benjamin S. POLLACK
  • Publication number: 20200145672
    Abstract: A method of decoding a bitstream by an electronic device is provided. An image frame is received from the bitstream, and a block unit is determined from the image frame. A prediction index of the block unit is determined from the bitstream. A plurality of reference mode indices is determined based on a plurality of neighboring blocks of the block unit. The electronic device determines whether the reference mode indices are greater than a specific one of a plurality of non-angular mode indices. When the reference mode indices are greater than the specific non-angular mode index, the electronic device determines whether a difference between the reference mode indices is equal to two. When the difference is equal to two, a prediction mode is selected according to the prediction index and based on a first candidate list. Then, the block unit is reconstructed based on the prediction mode.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 7, 2020
    Inventors: HONG-JHENG JHU, YAO-JEN CHANG
  • Patent number: 10624602
    Abstract: Embodiments include a medical imaging device and a method controlling one or more parameters of a medical imaging device. In one embodiment, a method includes receiving image data representing a first image of an object to be imaged using the radiation source and detecting a plurality of positions of respective predetermined features in the first image. Based upon the detected positions, a boundary of an imaging area of the object to be imaged is determined. Based on the determined boundary, one or more parameters of the radiation source unit are controlled.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 21, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Yao-jen Chang, Terrence Chen, Birgi Tamersoy, Vivek Kumar Singh, Susanne Oepping, Ralf Nanke
  • Publication number: 20200077106
    Abstract: A method of decoding a bitstream by an electronic device is provided. A block unit is determined from an image frame according to the bitstream. One of a plurality of candidate groups is selected based on a set flag in the bitstream. A plurality of merge mode with motion vector difference (MMVD) indications of the block unit is determined according to the bitstream. A plurality of MMVD prediction parameters of the block unit is determined based on the plurality of MMVD indications and the selected candidate group. The block unit is reconstructed based on the plurality of MMVD prediction parameters.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 5, 2020
    Inventors: HONG-JHENG JHU, YAO-JEN CHANG
  • Publication number: 20200058847
    Abstract: A perpendicularly magnetized spin-orbit magnetic device including a heavy metal layer, a magnetic tunnel junction, a first antiferromagnetic layer, a first block layer and a first stray field applying layer is provided. The magnetic tunnel junction is disposed on the heavy metal layer. The first block layer is disposed between the magnetic tunnel junction and the first antiferromagnetic layer. The first stray field applying layer is disposed between the first antiferromagnetic layer and the first block layer. The magnetic tunnel junction comprises a free layer, a tunneling barrier layer, and pinned layer. The tunneling barrier layer is disposed on the free layer. The pinned layer is disposed on the tunneling barrier layer. A film plane area of the free layer is greater than a film plane area of the tunneling barrier layer and a film plane area of the pinned layer.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Hsin-Han Lee, Shan-Yi Yang, Yao-Jen Chang, I-Jung Wang, Jeng-Hua Wei
  • Patent number: 10553788
    Abstract: A perpendicularly magnetized spin-orbit magnetic device including a heavy metal layer, a magnetic tunnel junction, a first antiferromagnetic layer, a first block layer and a first stray field applying layer is provided. The magnetic tunnel junction is disposed on the heavy metal layer. The first block layer is disposed between the magnetic tunnel junction and the first antiferromagnetic layer. The first stray field applying layer is disposed between the first antiferromagnetic layer and the first block layer. The first stray field applying layer provides a stray magnetic field parallel to a film plane. The first antiferromagnetic layer contacts the first stray field applying layer to define the direction of the magnetic moment in the first stray field applying layer.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 4, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Hsin-Han Lee, Shan-Yi Yang, Yu-Sheng Chen, Yao-Jen Chang
  • Publication number: 20200036991
    Abstract: A method of decoding a bitstream by an electronic device is provided. A block unit is determined from an image frame according to the bitstream. A sub-partition direction of the block unit is determined from a plurality of candidate directions according to the bitstream, and a prediction mode of the block unit is determined from a plurality of candidate mode according to the bitstream. The block unit is partitioned along the sub-partition direction to generate a plurality of sub-block units. A plurality of sample sets each including a plurality of reference samples is determined for the sub-block units and different from each other. Each of the plurality of sub-block units is reconstructed based on a corresponding one of the sample sets according to the prediction mode of the block unit.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: HUI-YU JIANG, YAO-JEN CHANG
  • Publication number: 20200007879
    Abstract: A method of decoding a bitstream by an electronic device is provided. A block unit having a block size is determined from an image frame according to the bitstream. The number of one or more reference lines neighboring to the block unit is determined based on the block size. One of the one or more reference lines is selected based on the number of the one or more reference lines. The block unit is reconstructed based on the selected one of the one or more reference lines.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 2, 2020
    Inventors: HUI-YU JIANG, YAO-JEN CHANG
  • Patent number: 10507002
    Abstract: A system includes: a movable X-ray tube scanner; a range sensor movable with the X-ray tube scanner; an X-ray detector positioned to detect X-rays from the X-ray tube passing through a standing subject between the X-ray tube and the X-ray detector; and a processor configured for automatically controlling the X-ray tube scanner to transmit X-rays to a region of interest of the patient while the subject is standing between the X-ray tube and the X-ray detector.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: December 17, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Kumar Singh, Yao-jen Chang, Birgi Tamersoy, Kai Ma, Susanne Oepping, Ralf Nanke, Terrence Chen