Patents by Inventor Yaohong Liu

Yaohong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200110056
    Abstract: A sampling tube bundle includes a tube bundle body and a joint assembly. The tube bundle body includes a gas sampling tube for transmitting sampling gas; a metal woven layer wrapping an outer circumference of the gas sampling tube; a heating pad comprising a heat tracing cable wrapping an outer circumference of the metal woven layer, for heating the sampling gas in the gas sampling tube; a flame resistant tape wound around an outer circumference of the of the heating pad; a plurality of signal transmission lines circumferentially spaced apart from one another are arranged outside the flame resistant tape; and a sheath located outside the signal transmission line. The joint assembly is arranged on an end of the tube bundle body, for connecting to an analysis device or a sampling device.
    Type: Application
    Filed: May 8, 2019
    Publication date: April 9, 2020
    Applicants: TSINGHUA UNIVERSITY, Nuctech Company Limited, WUHU JIAHONG NEW MATERIAL CO., LTD.
    Inventors: Zhiqiang CHEN, Chunan XU, Qingjun ZHANG, Fengfeng XIONG, Yuanjing LI, Ziran ZHAO, Yinong LIU, Yaohong LIU, Ge LI, Qiufeng MA, Biao CAO
  • Patent number: 10613247
    Abstract: The present application relates to a method, apparatus and system for inspecting an object based on a cosmic ray, pertaining to the technical field of radiometric imaging and safety inspection. The method includes: recording a movement trajectory of an inspected object by using a monitoring device; acquiring information of charged particles in the cosmic ray by using a position-sensitive detector, the information of charged particles comprising trajectory information of the charged particles; performing position coincidence for the movement trajectory and the trajectory information to determine the object; performing trajectory remodeling for the charged particles according to the information of charged particles; and identifying a material inside the moving object according to the trajectory remodeling.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: April 7, 2020
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Kejun Kang, Zhiqiang Chen, Yuanjing Li, Ziran Zhao, Junli Li, Xuewu Wang, Yaohong Liu, Zhi Zeng, Jianping Gu, Song Liang, Bicheng Liu, Guangming Xu, Yongqiang Wang
  • Patent number: 10607483
    Abstract: Disclosed is a vehicle identification method and system. The method includes: acquiring appearance information of an inspected vehicle; obtaining external features of the vehicle based on the appearance information; acquiring a transmission image of the vehicle and obtaining internal features of the vehicle from the transmission image; forming descriptions on the vehicle at least based on the external features and the internal features; and determining a vehicle model of the vehicle from a vehicle model databased by utilizing the descriptions. This method merges various types of modality information, especially introducing the transmission image, and combines the internal structure information with the appearance information, so that the present disclosure can identify a vehicle model more practically.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: March 31, 2020
    Assignees: Tsinghua University, Nutech Company Limited
    Inventors: Zhiqiang Chen, Li Zhang, Jianmin Li, Ziran Zhao, Yaohong Liu, Qiang Li, Zheng Hu, Jianping Gu, Ying Li
  • Patent number: 10578765
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. The scanning method includes obtaining detection data of an object to be inspected under radiation scanning using a detector, adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 3, 2020
    Inventors: Kejun Kang, Yaohong Liu, Ziran Zhao, Wei Jia, Jianping Gu, Chuanxiang Tang, Huaibi Chen, Jianjun Gao, Wei Yin, Xiying Liu
  • Patent number: 10539531
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 21, 2020
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10520402
    Abstract: The present disclosure relates to the technical field of safety detection, and in particular to a sample collecting and introducing device and a detection system. The sample collecting and introducing device provided by the present disclosure includes a sampling device for collecting a sample, and a semipermeable membrane device for extracting the sample collected by the sampling device and conveying the extracted sample to detection equipment, wherein the sampling device is provided with an air guide cavity, the air guide cavity is configured to guide airflow carrying the sample to flow to the semipermeable membrane device, the semipermeable membrane device is provided with a semipermeable membrane which is arranged outside the sampling device. In the present disclosure, the size of the semipermeable membrane is no longer limited by the sampling device, and therefore the difficulty of increasing the area of the semipermeable membrane is reduced.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: December 31, 2019
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Ge Li, Biao Cao, Jingli Xie, Xiaolin Zhao, Qiufeng Ma
  • Patent number: 10509979
    Abstract: An inspection method and system for inspecting whether there is any liquor in goods is provided. The method includes: acquiring a radiation image of goods being inspected; processing on the radiation image to obtain an ROI; inspecting on the ROI using a liquor goods inspection model to determine if the ROI of the radiation image contains liquor goods. The above solution performs liquor inspection on scanned images of goods, especially containers, so as to intelligently assist the image inspectors.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: December 17, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Zhiqiang Chen, Li Zhang, Ziran Zhao, Yaohong Liu, Duokun Zhang, Jianping Gu, Qiang Li, Jian Zhang
  • Patent number: 10510683
    Abstract: The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignees: Tsinghua University, NUCTECH COMPANY LIMITED
    Inventors: Wenjian Zhang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Huishao He, Shuwei Li, Nan Bai
  • Patent number: 10495776
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. Wherein, the scan method of this invention comprises: obtaining detection data of an object to be inspected under radiation scanning using a detector; adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 3, 2019
    Inventors: Kejun Kang, Yaohong Liu, Ziran Zhao, Wei Jia, Jianping Gu, Chuanxiang Tang, Huaibi Chen, Jianjun Gao, Wei Yin, Xiying Liu
  • Publication number: 20190346472
    Abstract: The present disclosure provides a gate system for sample detection and a method of sample inspection, which relate to the field of detection and analysis technology. The gate system comprises: an accommodating apparatus configured to accommodate an inserted ticket to be detected; a wipe sampling apparatus including a wipe sampling belt which is configured to drive the ticket to be detected to move within the accommodating apparatus and to conduct a wipe sampling to the ticket; an inspiratory sampling apparatus configured to collect samples dropped from the wipe sampling apparatus; and a detection apparatus configured to detect the samples and output detection results. The gate system for sample detection and the method of sample inspection provided by the present disclosure have a wide range of applications and can perform rapid sampling and detection to those substances that are difficult to be volatilized.
    Type: Application
    Filed: May 8, 2019
    Publication date: November 14, 2019
    Inventors: Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Qiufeng MA, Lili YAN, Weiping ZHU, Biao CAO
  • Patent number: 10466372
    Abstract: The present invention discloses an X-ray beam intensity monitoring device and an X-ray inspection system. The X-ray beam intensity monitoring device comprises an intensity detecting module and a data processing module, wherein the intensity detecting module is adopted to be irradiated by the X-ray beam and send a detecting signal, the data processing module is coupled with the intensity detecting module to receive the detecting signal and output an X-ray beam intensity monitoring signal, wherein the X-ray beam intensity monitoring signal includes a dose monitoring signal for the X-ray beam and a brightness correction signal for correcting signal values of the X-ray beam. The X-ray beam intensity monitoring device can simultaneously perform dose monitoring and brightness monitoring, thereby improving the service efficiency of the X-ray beam intensity monitoring device. Moreover, the monitoring result of the X-ray beam intensity can be more accurate and reliable.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 5, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Kejun Kang, Shuwei Li, Qingjun Zhang, Yuanjing Li, Yulan Li, Ziran Zhao, Yinong Liu, Yaohong Liu, Weibin Zhu, Xiaolin Zhao, Huishao He
  • Publication number: 20190317240
    Abstract: The present disclosure provides a spiral Computed Tomography (CT) device and a three-dimensional image reconstruction method.
    Type: Application
    Filed: August 4, 2017
    Publication date: October 17, 2019
    Inventors: Zhiqiang CHEN, Ziran ZHAO, Yaohong LIU, Jianping GU, Qian YI, Bicheng LIU, Guangming XU
  • Patent number: 10429348
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 1, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10408804
    Abstract: A darkroom type security inspection apparatus and a method of performing an inspection using the darkroom type security inspection apparatus. An apparatus includes a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing include: a sample collecting unit configured to collect a sample, a conveyor unit, and a X-ray detection unit to detect a position of the objected to be inspected, wherein the X-ray detection unit is configured to determine the position of the objected to be inspected within the sampling assembly so that the object to be inspected together with the conveyor unit is conveyed to an expected position; and a sample processing assembly, wherein the assemblies disposed inside the housing are communicated by fittings or connectors.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 10, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Weiping Zhu, Yaohong Liu, Qiufeng Ma, Xiang Zou, Huishao He, Jianping Chang, Song Liang
  • Patent number: 10379252
    Abstract: Disclosed is a method and device for estimating weight of an object to be inspected in an inspection system. An effective atomic number and a high-energy gray value of the dual-energy corresponding to each pixel of the object to be inspected are obtained by a dual-energy radiation scanning. A mass-thickness value for a corresponding pixel is obtained from a pre-created mass-thickness attenuation curve by utilizing the effective atomic numbers and the high-energy gray value of the dual-energy for respective pixels. Weight information for at least a part of the object to be inspected is calculated by multiplying the mass-thickness value by the area of the pixel. Such a method may accurately calculate the weight of the object to be inspected and save the cost for a conventional weighing hardware.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 13, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Zhiqiang Chen, Yuanjing Li, Li Zhang, Ziran Zhao, Yaohong Liu, Juan Zheng, Jianping Gu, Chunguang Zong
  • Publication number: 20190234905
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Publication number: 20190234904
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Publication number: 20190204270
    Abstract: A gas chromatography-ion mobility spectrometry detector and a hyphenated apparatus, the gas chromatography-ion mobility spectrometry detector comprises a gas chromatography mechanism and an ion mobility spectrometry mechanism. The gas chromatography mechanism comprises a chromatographic column and a sample injection port. The ion mobility spectrometry mechanism comprises a mobility tube and a connecting body, while a metal connection plate of the connecting body comprises a chromatographic metal plate, an ion mobility metal plate and a semipermeable membrane; on the ion mobility metal plate there are provided an ion mobility sample and carrier gas inlet, an ion mobility sample chamber and a sample injection port; the chromatography sample chamber and the ion mobility sample chamber are separated by semipermeable membrane.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Inventors: Qingjun ZHANG, Weiping ZHU, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Qiufeng MA, Ge LI, Biao CAO, Nan BAI
  • Publication number: 20190204188
    Abstract: A sampling adsorber, a heat desorption chamber device, a sampling apparatus and an analyzer apparatus. The sampling adsorber includes an outer barrel, which includes an outer barrel first end and an outer barrel second end, and a core located in the outer barrel, the core having a core first end and a core second end, and the outer barrel first end and the core first end are located at a same side of the sampling adsorber. The core includes an adsorbent portion configured to adsorb a sample and a core body portion, the adsorbent portion connected to the core body portion. Sizes of the outer barrel and the core are formed such that a gap is provided between them to allow external gas to enter the gap through the adsorbent portion and to subsequently be discharged from a downstream portion of the gap.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 4, 2019
    Applicants: Tsinghua University, NUCTECH COMPANY LIMITED
    Inventors: Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Nan BAI, Ge LI, Qiufeng MA, Biao CAO, Weiping ZHU
  • Publication number: 20190204271
    Abstract: The present disclosure provides a device for collecting semi-volatile or non-volatile substance, including an air nozzle, a front cavity and a collecting body. The air nozzle is configured to eject air to a sample attachment surface. The front cavity has an upper port. The collecting body is sealingly connected to a lower end of the front cavity, inside of which is provided with a cylindrical cavity and a conical cavity arranged vertically coaxially, and bottom of which is provided with a sample outlet. The collecting body is provided with an air intake passage which is non-coplanar with respect to an axis of the cylindrical cavity and is disposed obliquely downward and inward. The collecting body is further provided with an air exhaust passage one end of which is a discharge port connected to the interior of the cylindrical cavity, the other end is connected to an air pump.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Inventors: Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Ge LI, Jingli XIE, Qiufeng MA, Biao CAO