Patents by Inventor Yaoling Pan
Yaoling Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12228534Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.Type: GrantFiled: March 13, 2024Date of Patent: February 18, 2025Assignee: Applied Materials, Inc.Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
-
Publication number: 20250042727Abstract: An electromechanical systems structure including: providing a stack, including a structural layer extending in a plane, a sidewall layer including a first portion lying in a plane parallel to the structural layer plane and a second portion lying in a plane transverse to the structural layer plane, an etch-stop layer, positioned between the sidewall layer and the structural layer, including an etch-selectivity different from an etch-selectivity of the structural layer and an etch-selectivity of the sidewall layer, and a mold comprising a wall parallel to the sidewall layer's second portion; etching the sidewall layer's first portion to expose the etch-stop layer; removing the mold; etching the etch-stop layer such that the sidewall layer's second portion masks a portion of the etch-stop layer; removing the sidewall layer's second portion; and etching the structural layer such that the portion of the etch-stop layer masks a portion of the structural layer.Type: ApplicationFiled: June 7, 2024Publication date: February 6, 2025Inventors: John HONG, Tallis CHANG, Edward CHAN, Bing WEN, Yaoling PAN, Sean ANDREWS
-
Patent number: 12163911Abstract: Embodiments disclosed herein include a sensor assembly. In an embodiment, the sensor assembly comprises a sensor module and a housing assembly. In an embodiment, the sensor module comprises a substrate, a capacitor with a first electrode and a second electrode on the substrate, and a capacitive-to-digital converter (CDC) electrically coupled to the first electrode and the second electrode. In an embodiment, the housing assembly is attached to the sensor module and comprises a shaft, wherein the shaft is hollow, and a cap over a first end of the shaft, wherein the cap has an opening to expose the capacitor.Type: GrantFiled: July 8, 2022Date of Patent: December 10, 2024Assignee: Applied Materials, Inc.Inventors: Yaoling Pan, Patrick John Tae, Leonard Tedeschi, Michael D. Willwerth, Daniel Thomas McCormick
-
Patent number: 12123090Abstract: Methods and apparatus for a processing chamber are provided herein. The apparatus includes, for example, an inner volume defined in the processing chamber; a first sensor assembly coupled to a surface located in the inner volume of the processing chamber and including a first electrode configuration configured to measure an electrical characteristic associated with a film deposited within the inner volume of the processing chamber; and a second sensor assembly coupled to the surface located in the inner volume of the processing chamber in relative proximity to the first sensor assembly and including a second electrode configuration, different from the first electrode configuration, configured to measure the same electrical characteristic as the first electrode configuration.Type: GrantFiled: September 14, 2023Date of Patent: October 22, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Patrick Tae, Yaoling Pan, Leonard M Tedeschi
-
Publication number: 20240321610Abstract: The present disclosure generally relates to a method and apparatus for determining a metric related to erosion of a ring assembly used in an etching within a plasma processing chamber. In one example, the apparatus is configured to obtain a metric indicative of erosion on an edge ring disposed on a substrate support assembly in a plasma processing chamber. A sensor obtains the metric for the edge ring. The metric correlates to the quantity of erosion in the edge ring. In another example, the ring sensor may be arranged outside of a periphery of a substrate support assembly. The metric may be acquired by the ring sensor through a plasma screen.Type: ApplicationFiled: May 28, 2024Publication date: September 26, 2024Inventors: Yaoling PAN, Patrick John TAE, Michael D. WILLWERTH, Leonard M. TEDESCHI, Daniel Sang BYUN, Philip Allan KRAUS, Phillip CRIMINALE, Changhun LEE, Rajinder DHINDSA, Andreas SCHMID, Denis M. KOOSAU
-
Patent number: 12009236Abstract: The present disclosure generally relates to a method and apparatus for determining a metric related to erosion of a ring assembly used in an etching within a plasma processing chamber. In one example, the apparatus is configured to obtain a metric indicative of erosion on an edge ring disposed on a substrate support assembly in a plasma processing chamber. A sensor obtains the metric for the edge ring. The metric correlates to the quantity of erosion in the edge ring. In another example, the ring sensor may be arranged outside of a periphery of a substrate support assembly. The metric may be acquired by the ring sensor through a plasma screen.Type: GrantFiled: April 22, 2019Date of Patent: June 11, 2024Assignee: Applied Materials, Inc.Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard M. Tedeschi, Daniel Sang Byun, Philip Allan Kraus, Phillip A. Criminale, Changhun Lee, Rajinder Dhindsa, Andreas Schmid, Denis M. Koosau
-
Patent number: 12006209Abstract: A method of manufacturing an electromechanical systems structure includes manufacturing sub-micron structural features. In some embodiments, the structural features are less than the lithographic limit of a lithography process.Type: GrantFiled: March 14, 2019Date of Patent: June 11, 2024Assignee: Obsidian Sensors, Inc.Inventors: John Hong, Tallis Chang, Edward Chan, Bing Wen, Yaoling Pan, Sean Andrews
-
Patent number: 11959868Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.Type: GrantFiled: February 3, 2021Date of Patent: April 16, 2024Assignee: Applied Materials, Inc.Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
-
Publication number: 20240002999Abstract: Methods and apparatus for a processing chamber are provided herein. The apparatus includes, for example, an inner volume defined in the processing chamber; a first sensor assembly coupled to a surface located in the inner volume of the processing chamber and including a first electrode configuration configured to measure an electrical characteristic associated with a film deposited within the inner volume of the processing chamber; and a second sensor assembly coupled to the surface located in the inner volume of the processing chamber in relative proximity to the first sensor assembly and including a second electrode configuration, different from the first electrode configuration, configured to measure the same electrical characteristic as the first electrode configuration.Type: ApplicationFiled: September 14, 2023Publication date: January 4, 2024Inventors: Patrick TAE, Yaoling PAN, Leonard M. TEDESCHI
-
Publication number: 20230343568Abstract: Capacitive sensors and capacitive sensing data integration for plasma chamber condition monitoring are described. In an example, a plasma chamber monitoring system includes a plurality of capacitive sensors, a capacitance digital converter, and an applied process server coupled to the capacitance digital converter, the applied process server including a system software. The capacitance digital converter includes an isolation interface coupled to the plurality of capacitive sensors, a power supply coupled to the isolation interface, a field-programmable gate-array firmware coupled to the isolation interface, and an application-specific integrated circuit coupled to the field-programmable gate-array firmware.Type: ApplicationFiled: November 29, 2022Publication date: October 26, 2023Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard Tedeschi, Kiyki-Shiy N. Shang, Mikhail V. Taraboukhine, Charles R. Hardy, Sivasankar Nagarajan
-
Patent number: 11781214Abstract: Methods and apparatus for a processing chamber are provided herein. The apparatus includes, for example, an inner volume defined in the processing chamber; a first sensor assembly coupled to a surface located in the inner volume of the processing chamber and including a first electrode configuration configured to measure an electrical characteristic associated with a film deposited within the inner volume of the processing chamber; and a second sensor assembly coupled to the surface located in the inner volume of the processing chamber in relative proximity to the first sensor assembly and including a second electrode configuration, different from the first electrode configuration, configured to measure the same electrical characteristic as the first electrode configuration.Type: GrantFiled: July 30, 2019Date of Patent: October 10, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Patrick Tae, Yaoling Pan, Leonard M. Tedeschi
-
Patent number: 11685649Abstract: A method of manufacturing MEMS housings includes: providing glass spacers; providing a window plate; attaching the window plate to the glass spacers; aligning the glass spacers with a device glass plate having MEMS devices thereon; bonding the glass spacers to the device glass plate; and singulating the glass spacers, window plate, and device glass plate to produce the MEMS housings.Type: GrantFiled: March 20, 2019Date of Patent: June 27, 2023Assignee: Obsidian Sensors, Inc.Inventors: John Hong, Tallis Chang, Edward Chan, Bing Wen, Yaoling Pan, Kenji Nomura
-
Publication number: 20230103165Abstract: Capacitive sensors and capacitive sensing data integration for plasma chamber condition monitoring are described. In an example, a plasma chamber monitoring system includes a plurality of capacitive sensors, a capacitance digital converter, and an applied process server coupled to the capacitance digital converter, the applied process server including a system software. The capacitance digital converter includes an isolation interface coupled to the plurality of capacitive sensors, a power supply coupled to the isolation interface, a field-programmable gate-array firmware coupled to the isolation interface, and an application-specific integrated circuit coupled to the field-programmable gate-array firmware.Type: ApplicationFiled: November 29, 2022Publication date: March 30, 2023Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard Tedeschi, Kiyki-Shiy N. Shang, Mikhail V. Taraboukhine, Charles R. Hardy, Sivasankar Nagarajan
-
Patent number: 11581206Abstract: Embodiments disclosed herein comprise a sensor. In an embodiment, the sensor comprises a substrate having a first surface and a second surface opposite from the first surface. In an embodiment, the sensor further comprises a first electrode over the first surface of the substrate, and a second electrode over the first surface of the substrate and adjacent to the first electrode. In an embodiment, the sensor further comprises a barrier layer over the first electrode and the second electrode.Type: GrantFiled: March 6, 2020Date of Patent: February 14, 2023Assignee: Applied Materials, Inc.Inventors: Yaoling Pan, Patrick John Tae, Leonard Tedeschi, Jennifer Sun, Philip Allan Kraus, Xiaopu Li, Kallol Bera, Michael D. Willwerth, Albert Barrett Hicks, III, Lisa J. Enman, Mark Joseph Saly, Daniel Thomas McCormick
-
Patent number: 11551905Abstract: Embodiments described herein include a resonant process monitor and methods of forming such a resonant process monitor. In an embodiment, the resonant process monitor includes a frame that has a first opening and a second opening. In an embodiment, a resonant body seals the first opening of the frame. In an embodiment, a first electrode on a first surface of the resonant body contacts the frame and a second electrode is on a second surface of the resonant body. Embodiments also include a back plate that seals the second opening of the frame. In an embodiment the back plate is mechanically coupled to the frame, and the resonant body, the back plate, and interior surfaces of the frame define a cavity.Type: GrantFiled: March 19, 2018Date of Patent: January 10, 2023Assignee: Intel CorporationInventors: Yaoling Pan, Vijaykumar Krithivasan, Shimin Mao, Kelvin Chan, Michael D. Willwerth, Anantha Subramani, Ashish Goel, Chih-shun Lu, Philip Allan Kraus, Patrick John Tae, Leonard Tedeschi
-
Patent number: 11545346Abstract: Capacitive sensors and capacitive sensing data integration for plasma chamber condition monitoring are described. In an example, a plasma chamber monitoring system includes a plurality of capacitive sensors, a capacitance digital converter, and an applied process server coupled to the capacitance digital converter, the applied process server including a system software. The capacitance digital converter includes an isolation interface coupled to the plurality of capacitive sensors, a power supply coupled to the isolation interface, a field-programmable gate-array firmware coupled to the isolation interface, and an application-specific integrated circuit coupled to the field-programmable gate-array firmware.Type: GrantFiled: March 6, 2020Date of Patent: January 3, 2023Assignee: Applied Materials, Inc.Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard Tedeschi, Kiyki-Shiy N. Shang, Mikhail V. Taraboukhine, Charles R. Hardy, Sivasankar Nagarajan
-
Patent number: 11415538Abstract: Embodiments disclosed herein include a sensor assembly. In an embodiment, the sensor assembly comprises a sensor module and a housing assembly. In an embodiment, the sensor module comprises a substrate, a capacitor with a first electrode and a second electrode on the substrate, and a capacitive-to-digital converter (CDC) electrically coupled to the first electrode and the second electrode. In an embodiment, the housing assembly is attached to the sensor module and comprises a shaft, wherein the shaft is hollow, and a cap over a first end of the shaft, wherein the cap has an opening to expose the capacitor.Type: GrantFiled: March 6, 2020Date of Patent: August 16, 2022Assignee: Applied Materials, Inc.Inventors: Yaoling Pan, Patrick John Tae, Leonard Tedeschi, Michael D. Willwerth, Daniel Thomas McCormick
-
Publication number: 20220244205Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.Type: ApplicationFiled: February 3, 2021Publication date: August 4, 2022Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
-
Patent number: 11282760Abstract: This disclosure provides devices and methods for 3-D device packaging with backside interconnections. One or more device elements can be hermetically sealed from an ambient environment, such as by vacuum lamination and bonding. One or more via connections provide electrical interconnection from a device element to a back side of a device substrate, and provide electrical interconnection from the device substrate to external circuitry on the back side of the device. The external circuitry can include a printed circuit board or flex circuit. In some implementations, an electrically conductive pad is provided on the back side, which is electrically connected to at least one of the via connections. In some implementations, the one or more via connections are electrically connected to one or more electrical components or interconnections, such as a TFT or a routing line.Type: GrantFiled: October 22, 2019Date of Patent: March 22, 2022Assignee: Obsidian Sensors, Inc.Inventors: Yaoling Pan, Tallis Young Chang, John Hyunchul Hong
-
Publication number: 20210280399Abstract: Capacitive sensors and capacitive sensing locations for plasma chamber condition monitoring are described. In an example, a plasma processing chamber includes a chamber wall surrounding a processing region. A chamber lid is over the chamber wall and above the processing region. A chamber floor is beneath the chamber wall and below the processing region. A support pedestal is in the processing region and below the chamber lid and above the chamber floor, and the support pedestal surrounded by the chamber wall. A capacitive sensor module can be in an opening of the chamber wall. The chamber lid can include a capacitive sensor module. The chamber floor can include an evacuation port and a capacitive sensor module within or adjacent to the evacuation port. The support pedestal can include a ring structure surrounding a substrate support region, and a capacitive sensor module in an opening of the ring structure.Type: ApplicationFiled: March 6, 2020Publication date: September 9, 2021Inventors: Yaoling Pan, Patrick John Tae, Leonard Tedeschi, Philip Allan Kraus, Michael D. Willwerth