Patents by Inventor Yaping XUE

Yaping XUE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210188803
    Abstract: A pyridinylmethylenepiperidine derivatives and uses thereof, specifically, the present invention relates to a novel pyridinylmethylenepiperidine compound and a pharmaceutical composition containing this compound, which may be used for activating 5-HT1F receptor. The present invention also relates to methods of preparing this compound and pharmaceutical composition, and their use in the manufacture of a medicament for treating a 5-HT1F receptor-related disease, especially migraine.
    Type: Application
    Filed: August 22, 2019
    Publication date: June 24, 2021
    Applicant: SUNSHINE LAKE PHARMA CO., LTD.
    Inventors: Chuanfei JIN, Wenhe ZHONG, Yaping XUE
  • Publication number: 20210155920
    Abstract: The present invention discloses a recombinant vector constructed from an encoding gene of a nitrilase mutant, a recombinant genetic engineered strain and application thereof. the nucleotide sequence of the gene is shown in SEQ ID No.5, and the amino acid sequence of the mutant is shown in SEQ ID No.6. In the present invention, by the protein molecular modification, thermostability of the purified nitrilase LNIT5 is increased by up to 4.5 folds; and by utilizing recombinant E. coli containing the nitrilase mutant to hydrolyze 1-cyanocyclohexylacetonitrile at a high temperature (45° C.), product tolerance is increased, activity of NIT5-L201F is increased by 20%, and the mutant NITLNIT5-AcN can completely hydrolyze 750 mM 1-cyanocyclohexylacetonitrile within 8 hours and achieve an doubled conversion rate.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Yaping XUE, Yuguo ZHENG, Zhe XU, Zhiqiang LIU
  • Publication number: 20210155919
    Abstract: The present invention discloses encoding genes of nitrilase mutants and application thereof. The nucleotide sequence of the gene is shown in SEQ ID No. 5, and the amino acid sequence of the mutant is shown in SEQ ID No. 6. In the present invention, by the protein molecular modification, thermostability of the purified nitrilase LNIT5 is increased by up to 4.5 folds; and by utilizing recombinant E. coli containing the nitrilase mutant to hydrolyze 1-cyanocyclohexylacetonitrile at a high temperature, product tolerance is increased, activity of NITS-L201F is increased by 20%, and the mutant NITLNIT5-AcN can completely hydrolyze 750 mM 1-cyanocyclohexylacetonitrile within 8 hours and achieve an doubled conversion rate. Therefore, the mutants obtained by the present invention have a good application prospect in efficiently catalyzing 1-cyanocyclohexylacetonitrile to synthesize gabapentin intermediate, 1-cyanocyclohexyl acetic acid.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Yaping XUE, Yuguo ZHENG, Zhe XU, Zhiqiang LIU
  • Patent number: 11001823
    Abstract: The present invention discloses a nitrilase mutant and application thereof. The mutant is obtained by mutating the amino acid at position 201 or replacing one or more amino acids at region 324-381 of the amino acid sequence shown in SEQ ID No. 2. In the present invention, by the protein molecular modification, thermostability of the purified nitrilase LNIT5 is increased by up to 4.5 folds; and by utilizing recombinant E. coli containing the nitrilase mutant to hydrolyze 1-cyanocyclohexylacetonitrile at a high temperature (45° C.), product tolerance is increased, activity of NIT5-L201F is increased by 20%, and the mutant NITLNIT5-AcN can completely hydrolyze 750 mM 1-cyanocyclohexylacetonitrile within 8 hours and achieve an doubled conversion rate. Therefore, the mutants obtained by the present invention have a good application prospect in efficiently catalyzing 1-cyanocyclohexylacetonitrile to synthesize gabapentin intermediate, 1-cyanocyclohexyl acetic acid.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 11, 2021
    Assignee: ZHEJIANG UNIVERSITY OF TECHNOLOGY
    Inventors: Yaping Xue, Yuguo Zheng, Zhe Xu, Zhiqiang Liu
  • Publication number: 20210071215
    Abstract: The present invention discloses an amino acid dehydrogenase mutant and application thereof in synthesizing L-glufosinate-ammonium, the amino acid dehydrogenase mutant is obtained by a single mutation or a multi-site mutation of the amino acid at position 95, 108, 172, 303 of the amino acid sequence shown in SEQ ID No.2. The amino acid dehydrogenase mutant DyGDH-F95I-A108T-R172P-R303H prepared by the present invention has a specific enzyme activity that is 33 times higher than that of the original Aldo-keto reductase, and the concentration of the largest substrate, 2-carbonyl-4-(hydroxymethylphosphinyl)-butyric acid reaches 500 mM, the amino acid dehydrogenase mutant has more industrial application prospects.
    Type: Application
    Filed: June 28, 2019
    Publication date: March 11, 2021
    Inventors: Yaping XUE, Feng CHENG, Heng LI, Yuguo ZHENG, Jianmiao XU
  • Publication number: 20200115695
    Abstract: The present invention discloses a nitrilase mutant and application thereof. The mutant is obtained by mutating the amino acid at position 201 or replacing one or more amino acids at region 324-381 of the amino acid sequence shown in SEQ ID No. 2. In the present invention, by the protein molecular modification, thermostability of the purified nitrilase LNIT5 is increased by up to 4.5 folds; and by utilizing recombinant E. coli containing the nitrilase mutant to hydrolyze 1-cyanocyclohexylacetonitrile at a high temperature (45° C.), product tolerance is increased, activity of NIT5-L201F is increased by 20%, and the mutant NITLNIT5-AcN can completely hydrolyze 750 mM 1-cyanocyclohexylacetonitrile within 8 hours and achieve an doubled conversion rate. Therefore, the mutants obtained by the present invention have a good application prospect in efficiently catalyzing 1-cyanocyclohexylacetonitrile to synthesize gabapentin intermediate, 1-cyanocyclohexyl acetic acid.
    Type: Application
    Filed: January 24, 2019
    Publication date: April 16, 2020
    Inventors: Yaping XUE, Yuguo ZHENG, Zhe XU, Zhiqiang LIU