Patents by Inventor Yariv Grobshtein

Yariv Grobshtein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854122
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, detector units, and at least one processor. The gantry defines a bore. The detector units are mounted to the gantry and configured to rotate as a group with the gantry around the bore in rotational steps, with each detector unit configured to sweep about a corresponding axis and acquire imaging information while sweeping about the corresponding axis. The at least one processor is coupled to the detector units and configured to determine a region of interest (ROI) of the object to be imaged; determine a sweeping configuration based on the size of the ROI; determine a rotational movement configuration for the gantry using the determined sweeping configuration; and control the gantry and the set of detector units to utilize the determined rotational movement and sweeping configurations during acquisition of imaging information.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: December 26, 2023
    Assignee: General Electric Company
    Inventors: Yariv Grobshtein, Michal Maria Merman, Shai Wald, Raz Carmi
  • Publication number: 20230190213
    Abstract: An imaging system is provided that includes a gantry, at least five detector units mounted to the gantry, a corresponding collimator for each of the detector units, at least one processing unit, and a controller. Each collimator has septa defining plural bores for each pixel of at least some of a plurality of pixels of the detector unit. A corresponding interior septum of the collimator is disposed above an internal portion of a corresponding pixel of the at least some of the plurality of pixels. The at least one processing unit is configured to obtain object information corresponding to the object to be imaged. The controller is configured to control an independent rotational movement of each the detector units used to acquire scanning information by detecting emissions from the object, wherein the controller rotates each of the detector units at a corresponding sweep rate.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Jean-Paul Bouhnik, Tzachi Rafaeli, Gil Kovalski, Yariv Grobshtein, Riyad Mahameed, Yaron Hefetz, Einat Binyamin, Yulim Zingerman, Nurit Rivka Wartski
  • Patent number: 11576634
    Abstract: An imaging system is provided that includes a gantry, at least five detector units mounted to the gantry, a corresponding collimator for each of the detector units, at least one processing unit, and a controller. Each collimator has septa defining plural bores for each pixel of at least some of a plurality of pixels of the detector unit. A corresponding interior septum of the collimator is disposed above an internal portion of a corresponding pixel of the at least some of the plurality of pixels. The at least one processing unit is configured to obtain object information corresponding to the object to be imaged. The controller is configured to control an independent rotational movement of each the detector units used to acquire scanning information by detecting emissions from the object, wherein the controller rotates each of the detector units at a corresponding sweep rate.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: February 14, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Jean-Paul Bouhnik, Tzachi Rafaeli, Gil Kovalski, Yariv Grobshtein, Riyad Mahameed, Yaron Hefetz, Einat Binyamin, Yulim Zingerman, Nurit Rivka Wartski
  • Patent number: 11534128
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, plural detector units mounted to the gantry, and at least one processor. The at least one processor is operably coupled to at least one of the detector units, and configured to acquire, via the detector units, imaging information. The imaging information includes edge information and interior information. The edge information corresponds to a contour boundary of tissue and the interior information corresponds to an intermediate portion of the tissue. The least one processor is configured to control the detector units to acquire a proportionally larger amount of imaging information for the contour boundary than for the intermediate portion.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: December 27, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michal Maria Merman, Yariv Grobshtein, Yaron Hefetz
  • Publication number: 20220323037
    Abstract: An imaging system is provided that includes a gantry defining a bore configured to accept an object to be imaged, wherein the gantry is configured to rotate about the bore. The system includes multiple detector units mounted to the gantry and configured to rotate with the gantry around the bore in rotational steps, each detector unit configured to sweep about a corresponding axis and acquire imaging information while sweeping about the corresponding axis. The system includes at least one processor operably coupled to at least one of the detector units that is configured to acquire, during an initial portion of a scan, imaging information of the object based on an initial contour and to detect an actual emission contour based on the imaging information. The processor is configured to update a scan sweep plan based on the detected actual emission contour for a remaining portion of the scan.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 13, 2022
    Inventors: Michal Maria Merman, Yariv Grobshtein
  • Publication number: 20220012925
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, detector units, and at least one processor. The gantry defines a bore. The detector units are mounted to the gantry and configured to rotate as a group with the gantry around the bore in rotational steps, with each detector unit configured to sweep about a corresponding axis and acquire imaging information while sweeping about the corresponding axis. The at least one processor is coupled to the detector units and configured to determine a region of interest (ROI) of the object to be imaged; determine a sweeping configuration based on the size of the ROI; determine a rotational movement configuration for the gantry using the determined sweeping configuration; and control the gantry and the set of detector units to utilize the determined rotational movement and sweeping configurations during acquisition of imaging information.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Yariv Grobshtein, Michal Maria Merman, Shai Wald, Raz Carmi
  • Patent number: 11151758
    Abstract: A system is provided that includes a gantry, detector units, and at least one processor. The gantry defines a bore. The plural detector units are mounted to the gantry and configured to rotate as a group with the gantry in rotational steps. Each detector unit is configured to acquire imaging information while sweeping about a corresponding axis. The at least one processor is configured to determine a region of interest (ROI) of an object; identify a set of detector units; for the identified set of detector units, determine a sweeping configuration that results in a predetermined percentage of projection pixels receiving information from the ROI; determine a rotational movement configuration for the gantry using the determined sweeping configuration; and control the gantry and the set of detector units to utilize the determined rotational movement and sweeping configurations during acquisition of imaging information.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Yariv Grobshtein, Michal Maria Merman, Shai Wald, Raz Carmi
  • Patent number: 10667771
    Abstract: Nuclear medicine (NM) imaging system includes a plurality of detector assemblies that each have a movable arm and a detector head that is coupled to the movable arm. The movable arm is configured to move the detector head toward and away from an object. The NM imaging system also includes at least one processor configured to determine a body contour of the object and determine an acquisition configuration using the body contour. The acquisition configuration includes at least three of the detector heads positioned in a dense group that borders the body contour. The detector heads in the dense group are primary detector heads. The at least one processor is also configured to move at least one of the object or one or more of the primary detector heads so that the primary detector heads are in the dense group near the object.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventors: Yariv Grobshtein, Shai Wald, Gillan Michael Grimberg, Ken Efrati, Jean-Paul Bouhnik
  • Patent number: 10656291
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, plural detector units mounted to the gantry, and at least one processor. Each detector unit defines a detector unit position and corresponding view oriented toward a center of the bore, and is configured to acquire imaging information over a sweep range. The at least one processor is operably coupled to at least one of the detector units, and is configured to acquire, via the detector units, imaging information. The imaging information includes focused imaging information corresponding to a focused region and background imaging information corresponding to surrounding tissue of the focused region. The at least one processor is also configured to reconstruct an image using the focused imaging information and the background imaging information using a first reconstruction technique for the focused imaging information and a different, second reconstruction technique for the background imaging information.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: May 19, 2020
    Assignee: General Electric Company
    Inventors: Yariv Grobshtein, Michal Merman
  • Publication number: 20200143572
    Abstract: A system is provided that includes a gantry, detector units, and at least one processor. The gantry defines a bore. The plural detector units are mounted to the gantry and configured to rotate as a group with the gantry in rotational steps. Each detector unit is configured to acquire imaging information while sweeping about a corresponding axis. The at least one processor is configured to determine a region of interest (ROI) of an object; identify a set of detector units; for the identified set of detector units, determine a sweeping configuration that results in a predetermined percentage of projection pixels receiving information from the ROI; determine a rotational movement configuration for the gantry using the determined sweeping configuration; and control the gantry and the set of detector units to utilize the determined rotational movement and sweeping configurations during acquisition of imaging information.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 7, 2020
    Inventors: Yariv Grobshtein, Michal Maria Merman, Shai Wald, Raz Carmi
  • Patent number: 10492745
    Abstract: An imaging system is provided including a gantry, a detector unit mounted to the gantry, at least one processing unit, and a controller. The at least one processing unit is configured to obtain object information corresponding to an object, and to automatically determine at least one first portion of the object and at least one second portion of the object. The controller is configured to control a rotational movement of the detector unit. The detector unit is rotatable at a sweep rate over a range of view of the object to be imaged, and the controller is configured to rotate the detector unit at an uneven sweep rate. The uneven sweep rate varies during the rotation from the, wherein a larger amount of scanning information is obtained for the at least one first portion than for the at least one second portion.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: December 3, 2019
    Assignee: GE Medical Systems Israel, Ltd
    Inventors: Jean-Paul Bouhnik, Tzachi Rafaeli, Gil Kovalski, Yariv Grobshtein, Riyad Mahameed, Yaron Hefetz, Einat Binyamin, Yulim Zingerman, Nurit Rivka Wartski
  • Patent number: 10478133
    Abstract: Methods and systems are provided for calibrating a nuclear medicine imaging system. In one embodiment, a method comprises: detecting, with a plurality of detectors, photons emitted by a calibration source comprising a radioactive line source and a fluorescence source, while pivoting one or more detectors of the plurality of detectors; and calibrating, with a processor communicatively coupled to the plurality of detectors, each detector of the plurality of detectors based on energy measurements of the detected photons. In this way, a two-point energy calibration of detectors can be performed with a single isotope, and without removing or adjusting a collimator attached to the detector.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: November 19, 2019
    Assignee: General Electric Company
    Inventors: Moshe Levy, Jean-Paul Bouhnik, Yariv Grobshtein, Gil Amisar, Yaron Hefetz
  • Publication number: 20190223816
    Abstract: An imaging system is provided that includes a gantry, at least five detector units mounted to the gantry, a corresponding collimator for each of the detector units, at least one processing unit, and a controller. Each collimator has septa defining plural bores for each pixel of at least some of a plurality of pixels of the detector unit. A corresponding interior septum of the collimator is disposed above an internal portion of a corresponding pixel of the at least some of the plurality of pixels. The at least one processing unit is configured to obtain object information corresponding to the object to be imaged. The controller is configured to control an independent rotational movement of each the detector units used to acquire scanning information by detecting emissions from the object, wherein the controller rotates each of the detector units at a corresponding sweep rate.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Jean-Paul Bouhnik, Tzachi Rafaeli, Gil Kovalski, Yariv Grobshtein, Riyad Mahameed, Yaron Hefetz, Einat Binyamin, Yulim Zingerman, Nurit Rivka Wartski
  • Publication number: 20190209108
    Abstract: Nuclear medicine (NM) imaging system includes a plurality of detector assemblies that each have a movable arm and a detector head that is coupled to the movable arm. The movable arm is configured to move the detector head toward and away from an object. The NM imaging system also includes at least one processor configured to determine a body contour of the object and determine an acquisition configuration using the body contour. The acquisition configuration includes at least three of the detector heads positioned in a dense group that borders the body contour. The detector heads in the dense group are primary detector heads. The at least one processor is also configured to move at least one of the object or one or more of the primary detector heads so that the primary detector heads are in the dense group near the object.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 11, 2019
    Inventors: Yariv Grobshtein, Shai Wald, Gillan Michael Grimberg, Ken Efrati, Jean-Paul Bouhnik
  • Patent number: 10213174
    Abstract: Nuclear medicine (NM) imaging system includes a plurality of detector assemblies that each have a movable arm and a detector head that is coupled to the movable arm. The movable arm is configured to move the detector head toward and away from an object. The NM imaging system also includes at least one processor configured to determine a body contour of the object and determine an acquisition configuration using the body contour. The acquisition configuration includes at least three of the detector heads positioned in a dense group that borders the body contour. The detector heads in the dense group are primary detector heads. The at least one processor is also configured to move at least one of the object or one or more of the primary detector heads so that the primary detector heads are in the dense group near the object.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Yariv Grobshtein, Shai Wald, Gillan Michael Grimberg, Ken Efrati, Jean-Paul Bouhnik
  • Patent number: 10209376
    Abstract: A customizable and upgradable imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The gantry can be partially populated with detector columns and the detector columns can be partially populated with detector elements.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 19, 2019
    Assignee: General Electric Company
    Inventors: Gil Kovalski, Jean-Paul Bouhnik, Jonathan Sachs, Yariv Grobshtein, Yulim Zingerman, Arie Eshco, Yaron Hefetz
  • Publication number: 20180338739
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, plural detector units mounted to the gantry, and at least one processor. The at least one processor is operably coupled to at least one of the detector units, and configured to acquire, via the detector units, imaging information. The imaging information includes edge information and interior information. The edge information corresponds to a contour boundary of tissue and the interior information corresponds to an intermediate portion of the tissue. The least one processor is configured to control the detector units to acquire a proportionally larger amount of imaging information for the contour boundary than for the intermediate portion.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Michal Maria Merman, Yariv Grobshtein, Yaron Hefetz
  • Publication number: 20180259659
    Abstract: A nuclear medicine (NM) multi-head imaging system is provided that includes a gantry, plural detector units mounted to the gantry, and at least one processor. Each detector unit defines a detector unit position and corresponding view oriented toward a center of the bore, and is configured to acquire imaging information over a sweep range. The at least one processor is operably coupled to at least one of the detector units, and is configured to acquire, via the detector units, imaging information. The imaging information includes focused imaging information corresponding to a focused region and background imaging information corresponding to surrounding tissue of the focused region. The at least one processor is also configured to reconstruct an image using the focused imaging information and the background imaging information using a first reconstruction technique for the focused imaging information and a different, second reconstruction technique for the background imaging information.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 13, 2018
    Inventors: Michal Merman, Yariv Grobshtein
  • Publication number: 20180188393
    Abstract: A customizable and upgradable imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The gantry can be partially populated with detector columns and the detector columns can be partially populated with detector elements.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Gil Kovalski, Jean-Paul Bouhnik, Jonathan Sachs, Yariv Grobshtein, Yulim Zingerman, Arie Eshco, Yaron Hefetz
  • Patent number: 9958552
    Abstract: A radiation detector system is provided that includes plural detector units and at least one processor. The detector units are configured to acquire imaging information at plural corresponding projection angles. The at least one processor is configured to acquire projections at the projection angles; organize the projections into groups based on the projection angles; and, for each group of projections, rotate a corresponding image from an original orientation so that the group of projections are parallel to a first axis of the rotated image, convolute and sum slices from the group of projections using kernels to provide a corresponding coordinate set forward projection; perform a back projection to provide back projections; and rotate the back projections to the original orientation and sum the rotated back projections to provide a back projected transaxial image.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Jonathan Benjamin Sachs, Yariv Grobshtein