Patents by Inventor Yark Kim

Yark Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070281402
    Abstract: Provided are a Schottky barrier tunnel single electron transistor and a method of manufacturing the same that use a Schottky barrier formed between metal and semiconductor by replacing a source and a drain with silicide as a reactant of silicon and metal, instead of a conventional method of manufacturing a single electron transistor (SET) that includes source and drain regions by implanting dopants such that an artificial quantum dot is formed in a channel region. As a result, it does not require a conventional PADOX process to form a quantum dot for a single electron transistor (SET), height and width of a tunneling barrier can be artificially adjusted by using silicide materials that have various Schottky junction barriers, and it is possible to improve current driving capability of the single electron transistor (SET).
    Type: Application
    Filed: August 16, 2007
    Publication date: December 6, 2007
    Inventors: Moon JANG, Yark KIM, Jae SHIN, Seong LEE
  • Publication number: 20070187758
    Abstract: Provided is a high-performance n-type Schottky barrier tunneling transistor with low Schottky barrier for electrons due to a Schottky junction formed on a Si (111) surface created through anisotropic etching. The Schottky barrier tunneling transistor includes: a silicon on insulator (SOI) substrate; a source and a drain formed on the SOI substrate; a channel formed between the source and the drain; a gate insulating layer and a gate electrode sequentially formed on the channel; and a sidewall insulating layer formed on both sidewalls of the gate insulating layer and the gate electrode, wherein an interface between the source/drain and the channel is on a Si (111) in the channel, and the source and drain consists of metal silicide through silicidation with a predetermined metal and forms a Schottky junction with the silicon channel.
    Type: Application
    Filed: December 7, 2006
    Publication date: August 16, 2007
    Inventors: Myung Jun, Moon Jang, Yark Kim, Chel Choi, Byoung Park, Seong Lee
  • Publication number: 20070128781
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same. The method includes the steps of: preparing a substrate; forming an active silicon layer on the substrate; forming a gate insulating layer on a region of the silicon layer; forming a gate electrode on the gate insulating layer; implanting ions into the silicon layer on which the gate insulating layer is not formed; and annealing the ion-implanted silicon layer. Accordingly, it is possible to manufacture the Schottky barrier tunnel transistor having stable characteristics and high performance by implanting the ions into the silicon layer using an ion implantation method and then annealing the silicon layer to form metal-silicide.
    Type: Application
    Filed: August 11, 2006
    Publication date: June 7, 2007
    Inventors: Moon Jang, Seong Lee, Yark Kim, Chel Choi, Myung Jun
  • Publication number: 20070034951
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Application
    Filed: July 13, 2006
    Publication date: February 15, 2007
    Inventors: Yark Kim, Seong Lee, Moon Jang, Chel Choi, Myung Jun, Byoung Park
  • Publication number: 20060131621
    Abstract: A device using an ambipolar transport of an SB-MOSFET and a method for operating the same are provided. The SB-MOSFET includes: a silicon channel region; a source and a drain contacted on both sides of the channel region and formed of material including metal layer; and a gate formed on the channel region, with a gate dielectric layer interposed therebetween. Positive (+), 0 or negative (?) gate voltage is selectively applied to the gate, the channel becomes off-state when the gate voltage between a negative threshold voltage and a positive threshold voltage is applied, and the channel becomes a first on-state and a second on-state when the gate voltage is lower than the negative threshold voltage or higher than the positive threshold voltage. Accordingly, it is possible to implement three current states, that is, hole current, electron current, and no current. The SB-MOSFET can be applied to a multi-bit memory and/or multi-bit logic device.
    Type: Application
    Filed: July 22, 2005
    Publication date: June 22, 2006
    Inventors: Jae Shin, Moon Jang, Yark Kim, Seong Lee
  • Publication number: 20060131664
    Abstract: An n-type SBTT and a manufacturing method thereof are provided. The SBTT includes a silicon layer, a gate, a double layer that has a rare-earth metal suicide layer and a transition metal silicide layer. The silicon layer has a channel region. The gate is formed in an overlapping manner on the channel region and has a gate dielectric layer on its interface with respect to the silicon layer. The double layer is formed as a source/drain that has the channel region interposed on the silicon layer.
    Type: Application
    Filed: July 22, 2005
    Publication date: June 22, 2006
    Inventors: Yark Kim, Moon Jang, Jae Shin, Seong Lee
  • Publication number: 20060118899
    Abstract: Provided are a Schottky barrier tunnel single electron transistor and a method of manufacturing the same that use a Schottky barrier formed between metal and semiconductor by replacing a source and a drain with silicide as a reactant of silicon and metal, instead of a conventional method of manufacturing a single electron transistor (SET) that includes source and drain regions by implanting dopants such that an artificial quantum dot is formed in a channel region. As a result, it does not require a conventional PADOX process to form a quantum dot for a single electron transistor (SET), height and width of a tunneling barrier can be artificially adjusted by using silicide materials that have various Schottky junction barriers, and it is possible to improve current driving capability of the single electron transistor (SET).
    Type: Application
    Filed: August 3, 2005
    Publication date: June 8, 2006
    Inventors: Moon Jang, Yark Kim, Jae Shin, Seong Lee