Patents by Inventor Yarn Chee Poon

Yarn Chee Poon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170176745
    Abstract: In a near-eye or heads-up display system including a display engine and an optical waveguide, a quarter-wave retarder (QWR) is positioned between a polarizing beam splitter (PBS) of the display engine and an input diffraction grating of the waveguide. Additionally, a linear polarizer can be positioned between the PBS and the QWR. Light corresponding to an image generated by a reflective microdisplay of the display engine is diffracted into the waveguide by the input diffraction grating, so it can travel by way of total internal reflection to an output coupler and viewed by a human eye. The QWR alone, or in combination with the linear polarizer, prevents a ghost image that may otherwise occur if a portion of the light corresponding to the image, that is diffracted into the waveguide by the input diffraction grating, is diffractively out-coupled by the input diffraction grating and thereafter reflects off the reflective microdisplay.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Yarn Chee Poon, Ian Nguyen, Eliezer Glik, Tapani Levola
  • Publication number: 20170171538
    Abstract: A system and method are disclosed for use in a virtual reality environment including a head mounted display device and a processing unit. In examples, the processing unit adjusts an amount by which left and right displayed images overlap each other at a given distance, such as the focal distance, from the head mounted display device.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: Cynthia S. Bell, Drew Steedly, Yarn Chee Poon, Joachim Pehserl
  • Publication number: 20170160547
    Abstract: Introduced here is a display device that comprises a light emitter and a diffractive optical element (DOE) that is optically coupled to receive light from the light emitter and to convey the light along an optical path. The DOE may have an input surface and an output surface parallel to the input surface, where the input surface and the output surface each have a central region and a peripheral region. The DOE further may have optical characteristics such that light exiting the DOE in the peripheral region of the output surface has greater brightness than light exiting the DOE in the central region of the output surface.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: James Randolph Webster, Jeb Wu, Steven John Robbins, Tuomas Heikki Sakari Vallius, Yarn Chee Poon
  • Publication number: 20170131551
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes a volume layer, embedded between first and second major planar surfaces of the bulk-substrate, configured to cause light that is output by the output-coupler to have a more uniform intensity distribution compared to if the volume layer were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Steven John Robbins, Scott Woltman, R. Andrew Wall, Yarn Chee Poon
  • Publication number: 20170131545
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes an adjacent planar optical component to provide a more uniform intensity distribution compared to if the adjacent planar optical component were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: R. Andrew Wall, Scott Woltman, Steven John Robbins, Xinye Lou, Gangok Lee, Yarn Chee Poon, Tuomas Vallius, Pasi Kostamo, Tapani Levola, Yijing Fu
  • Publication number: 20170068094
    Abstract: A display engine assembly comprises a first imager and a second imager to generate a left image and a right image, respectively, in a head-mounted display device. The left and right images are left and right components, respectively, of a single stereoscopic image. The display engine further comprises an optical waveguide optically coupled to the first imager and the second imager. The optical waveguide is part of a first optical path to convey the left image to a left eye of a user of the head-mounted display device and is also part of a second optical path to convey the right image to a right eye of the user of the head-mounted display device.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventors: James Randolph Webster, Jeb Wu, Richard James, Steven John Robbins, Yarn Chee Poon, KengHui Lin, Chienchih Hsiung
  • Publication number: 20160271380
    Abstract: A microneedle applicator. The applicator can include a microneedle array, a microneedle array holder, and an actuator movable between a first position and a second position to cause the microneedle array holder to move, respectively, between a retracted position and an extended position. The applicator can further include a first biasing element configured to bias the actuator in the first position, and a counter assembly, or mechanism, configured to count a number of times the microneedle array holder is moved between the retracted position and the extended position (or the number of times the actuator is moved from the first position to the second position). In some embodiments, the counter assembly can include the actuator and first biasing element.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 22, 2016
    Inventors: Yarn Chee Poon, Boon Yi Soon, David Julius, Mei-Ling Pan, Melvin Zin, Chi Ying Lee
  • Publication number: 20160266398
    Abstract: An optical light engine includes a pair of lenticular microlenslet arrays (MLAs) located on each side of a polarization converter. Non-polarized light from a source in the engine is focused by the first MLA onto cells of the polarization converter which converts the light to a common state of polarization to increase efficiency and improve contrast in the system. A half wave retarder is included on the polarization converter to change the polarization of any light that is reflected from downstream optical components to match that of the forward propagating light. The second MLA, which includes a relatively large number of microlenslet elements, collects the light from the polarization converter and homogenizes the light to be highly uniform when received at a downstream imaging panel in the light engine such as a liquid crystal on silicon (LCOS) panel.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Yarn Chee Poon, Steve Robbins, Angus Wu, Jeb Wu, James Webster, Richard Andrew Wall, Richard James, Robin Hsiung, RuPing Huang, Freeway Lin
  • Publication number: 20160234485
    Abstract: A wearable image display system comprises a headpiece, a light engine, and an optical component. The light engine is mounted on the headpiece and configured to generate beams, each of the beams being substantially collimated so that the beams form a virtual image. The optical component located to project an image onto an eye of a wearer and comprising an incoupling structure and an exit structure. The beams are directed from an exit aperture of the light engine to the in-coupling structure of the optical component. The exit structure is arranged to guide the beams onto the eye. The optical component is located between light engine and the eye. The optical component is angled relative to the light engine such that any outwardly reflected versions of the beams propagate clear of the exit aperture.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: Steven John Robbins, Tapani Levola, Pasi Saarikko, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Publication number: 20160231570
    Abstract: A wearable image display system comprises a headpiece, a first and a second light engine, and a first and a second optical component. The first and second light engines generate a first and a second set of beams respectively, each beam substantially collimated so that the first and second set form a first and a second virtual image respectively. Each optical component is located to project an image onto a first and a second eye of a wearer respectively. The first and second sets of beams are directed to incoupling structures of the first and second optical components respectively. Exit structures of the first and second optical components guide the first and second sets of beams onto the first and second eyes respectively. The optical components are located between the light engines and the eyes. Both of the light engines are mounted to a central portion of the headpiece.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: Tapani Levola, Pasi Saarikko, Steven John Robbins, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Publication number: 20160097930
    Abstract: The technology provides an optical system for converting a source of projected light to uniform light for a liquid crystal on silicon microdisplay in a confined space, such as in a near-eye display device. The optical system may include a first microlens array, a second microlens array, and a polarizer device disposed between the first microlens array and the second microlens array. The near-eye display device having first and second microlens arrays may be positioned by a support structure in a head-mounted display or head-up display.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 7, 2016
    Inventors: Steven John Robbins, Yarn Chee Poon
  • Publication number: 20160041390
    Abstract: The technology provides decoupling an aspheric optical element from a birdbath optical element in a near-eye display (NED) device. One or more aspheric lens are used with a spherical birdbath reflective mirror in a projection light engine of a NED device. A projection light engine provides image light (or other information), by way of the spherical birdbath reflective mirror and at least one aspheric lens, to a near-eye display of the NED device. The spherical birdbath reflective mirror collimates and reflects the image light to an exit pupil external to the projection light engine. Decoupling the aspheric optical element from the spherical birdbath reflective mirror may enable high modulation transfer function (MTF) and improved manufacturability of the projection light engine. The NED device having aspheric optical elements decoupled from a birdbath optical element may be positioned by a support structure in a head-mounted display (HMD) or head-up display (HUD).
    Type: Application
    Filed: August 7, 2014
    Publication date: February 11, 2016
    Inventors: Yarn Chee Poon, Joshua A Hudman, R Andrew Wall, Scott McEldowney, Steven John Robbins
  • Patent number: 9151463
    Abstract: A light source combines colored light from different LED sources to provide white light output. Multiple LEDs emitting light at different peak wavelengths may be disposed on a flexible substrate, the LEDs being close to an aperture formed in the substrate. Multiple mirrors, including at least one dichroic mirror, are oriented to reflect light from the multiple LEDs into the aperture. The flexible substrate includes a dielectric layer having a cavity region and an adjacent neighboring region that is thicker than the cavity region. The aperture and the multiple LEDs are all disposed in the cavity region of the dielectric layer. An integrating rod may be coupled to the aperture to receive the reflected light from the multiple LEDs.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: October 6, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Xiaohui Cheng, Ravi Palaniswamy, Arokiaraj Jesudoss, Yarn Chee Poon, Zhisheng Yun
  • Patent number: 9036223
    Abstract: Systems and methods for edge detection during an imaging operation are disclosed. In an exemplary implementation, a method may include subdividing an imaging area into a plurality of border detection zones. The method may also include scanning the imaging area including media to be scanned to obtain optical data for each of the plurality of border detection zones. The method may also include identifying at least one edge of the media based on change in the optical data between directly adjacent border detection zones, where the change indicates detection of a moiré pattern.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: May 19, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Yarn Chee Poon, Chuan Wai Wong, Whee Cheng Ong
  • Publication number: 20140253849
    Abstract: The disclosure generally relates to beamsplitters useful in color combiners, and in particular color combiners useful in small size format projectors such as pocket projectors. The disclosed beamsplitters and color combiners include a tilted dichroic reflective polarizer plate having at least two dichroic reflective polarizers tilted at different angles relative to incident light beams, with light collection optics to combine at least two colors of light.
    Type: Application
    Filed: October 23, 2012
    Publication date: September 11, 2014
    Inventors: Yarn Chee Poon, Andrew J. Ouderkirk, Philip E. Watson, Xiaohui Cheng, Kim Leong Tan, Stephen J. Willett
  • Publication number: 20140176818
    Abstract: Polarizing beam splitters and systems incorporating such beam splitters are described. More specifically, hybrid polarizing beam splitters and systems with such beam splitters that incorporate polymeric reflective polarizers aligned with MacNeille or wire grid reflective polarizers are described.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Philip E. Watson, Yarn Chee Poon, Andrew J. Ouderkirk
  • Publication number: 20130250570
    Abstract: A light source combines colored light from different LED sources to provide white light output. Multiple LEDs emitting light at different peak wavelengths may be disposed on a flexible substrate, the LEDs being close to an aperture formed in the substrate. Multiple mirrors, including at least one dichroic mirror, are oriented to reflect light from the multiple LEDs into the aperture. The flexible substrate includes a dielectric layer having a cavity region and an adjacent neighboring region that is thicker than the cavity region. The aperture and the multiple LEDs are all disposed in the cavity region of the dielectric layer. An integrating rod may be coupled to the aperture to receive the reflected light from the multiple LEDs.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 26, 2013
    Applicant: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Xiaohui Cheng, Ravi Palaniswamy, Arokiaraj Jesudoss, Yarn Chee Poon, Zhisheng Yun
  • Publication number: 20110273770
    Abstract: Optical elements, color combiners using the optical elements, and image projectors using the color combiners are described. The optical elements can be configured as color combiners that receive different wavelength spectrums of light and produce a combined light output that includes the different wavelength spectrums of light. In one aspect, the received light inputs are unpolarized, and the combined light output is polarized in a desired state. In one aspect, the received light inputs are unpolarized, and the combined light output is also unpolarized. The optical elements are configured to minimize the passage of light which may be damaging to wave-length-sensitive components in the light combiner. Image projectors using the color combiners can include imaging modules that operate by reflecting or transmitting polarized light.
    Type: Application
    Filed: November 18, 2009
    Publication date: November 10, 2011
    Inventors: Yarn Chee Poon, Andrew J. Ouderkirk, Philip E. Watson, Kim L. Tan, Xiaohui Cheng
  • Publication number: 20110235175
    Abstract: Optical elements, color combiners using the optical elements, and image projectors using the color combiners are described. The optical elements can be configured as color combiners that receive different wavelength spectrums of light and produce a combined light output that includes the different wavelength spectrums of light. In one aspect, the received light inputs are unpolarized, and the combined light output is polarized in a desired state. In one aspect, the received light inputs are unpolarized, and the combined light output is also unpolarized. The optical elements can be configured to minimize the passage of light which may be damaging to wavelength-sensitive components in the light combiner. Image projectors using the color combiners can include imaging modules that operate by reflecting or transmitting polarized light.
    Type: Application
    Filed: November 18, 2009
    Publication date: September 29, 2011
    Inventors: Yarn Chee Poon, Andrew J. Ouderkirk, Philip E. Watson, Xiaohui Cheng, Zhisheng Yun
  • Publication number: 20110216378
    Abstract: Systems and methods systems and methods for edge detection during an imaging operation are disclosed. In an exemplary implementation, a method may include subdividing an imaging area into a plurality of border detection zones. The method may also include scanning the imaging area including media to be scanned to obtain optical data for each of the plurality of border detection zones. The method may also include identifying at least one edge of the media based on change in the optical data between directly adjacent border detection zones, where the change indicates detection of a moiré pattern.
    Type: Application
    Filed: November 13, 2008
    Publication date: September 8, 2011
    Inventors: Yarn Chee Poon, Chuan Wai Wong, Whee Cheng Ong