Patents by Inventor Yaron Glazer

Yaron Glazer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10481285
    Abstract: A detector assembly is provided that includes a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the semiconductor detector. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one surrounding anode. The at least one processor is operably coupled to the pixelated anodes and is configured to acquire a primary signal from one of the anodes responsive to reception of a photon; acquire at least one secondary signal from at least one neighboring pixel; and determine a depth of interaction in the semiconductor detector for the reception of the photon by the one of the anodes using the at least one secondary signal.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 19, 2019
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Moshe Cohen-Erner, Avishai Ofan
  • Patent number: 10247834
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector, a collimator, plural pixelated anodes, and at least one processor. The collimator has openings defining pixels. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon and to generate at least one secondary signal responsive to reception of a photon by at least one surrounding anode. Each pixelated anode includes a first portion and a second portion located in different openings of the collimator. The at least one processor is operably coupled to the pixelated anodes, and configured to acquire a primary signal from one of the pixelated anodes; acquire at least one secondary signal from at least one neighboring pixelated anode; and determine a location for the reception of the photon using the primary signal and the at least one secondary signal.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: April 2, 2019
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Jean-Paul Bouhnik, Avishai Ofan, Moshe Cohen-Erner
  • Patent number: 9954132
    Abstract: A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: April 24, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Jeffrey Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9927539
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: March 27, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Avishai Ofan
  • Patent number: 9891328
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Publication number: 20170269240
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Avishai Ofan
  • Patent number: 9696440
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9632186
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: April 25, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Publication number: 20170090047
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Publication number: 20170016998
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Patent number: 9482764
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to charge collected by an adjacent anode. The at least one processor includes a tangible and non-transitory memory having stored thereon instructions configured to direct the at least one processor to determine a collected value for the collected charge signal, to determine a non-collected value for the non-collected charge signal, determine a calibrated value for the non-collected charge signal, determine a total charge produced by a charge sharing event using the collected value and the calibrated value, and count the charge sharing event as a single event if the total charge exceeds a predetermined value.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 1, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Yaron Glazer, Jeffrey Michael Levy
  • Publication number: 20160245934
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 25, 2016
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan
  • Publication number: 20160126402
    Abstract: A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventors: Arie Shahar, Yaron Glazer, Jeffrey Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9261609
    Abstract: Apparatus and methods for charge collection control in radiation detectors are provided. One radiation detector includes a semiconductor substrate, at least one cathode on a surface of the semiconductor substrate, and a plurality of anodes on a surface of the semiconductor substrate opposite the at least one cathode, wherein the plurality of anodes have gaps therebetween. The radiation detector further includes a charge collection control arrangement configured to cause one or more charges induced within the semiconductor substrate by incident photons to drift towards one or more of the plurality of anodes.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 16, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Eliezer Traub, Yaron Glazer, Ira Micah Blevis
  • Patent number: 9002084
    Abstract: A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 7, 2015
    Assignee: GE Medical Systems Israel, Ltd
    Inventors: Arie Shahar, Eliezer Traub, Peter Rusian, Yaron Glazer, Danny Magal, Zeev Gerber
  • Publication number: 20150063671
    Abstract: A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: Arie Shahar, Eliezer Traub, Peter Rusian, Yaron Glazer, Danny Magal, Zeev Gerber
  • Publication number: 20140048714
    Abstract: Apparatus and methods for charge collection control in radiation detectors are provided. One radiation detector includes a semiconductor substrate, at least one cathode on a surface of the semiconductor substrate, and a plurality of anodes on a surface of the semiconductor substrate opposite the at least one cathode, wherein the plurality of anodes have gaps therebetween. The radiation detector further includes a charge collection control arrangement configured to cause one or more charges induced within the semiconductor substrate by incident photons to drift towards one or more of the plurality of anodes.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: General Electricity Company
    Inventors: Arie Shahar, Eliezer Traub, Yaron Glazer, Ira Micah Blevis