Patents by Inventor Yaroslav Aleksandrovich Urzhumov

Yaroslav Aleksandrovich Urzhumov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11355841
    Abstract: An embodiment of an antenna configured to form a high-power beam, such as a battery-charging beam, includes a transmission structure, signal couplers, amplifiers, and antenna elements. The transmission structure (e.g., a waveguide) is configured to carry a reference signal (e.g., a traveling reference wave), and each of the signal couplers is configured to generate a respective intermediate signal in response to the reference signal at a respective location along the transmission structure. Each of the amplifiers is configured to amplify, selectively, an intermediate signal from a respective one of the couplers, and each of the antenna elements (e.g., conductive patches) is configured to radiate a respective elemental signal in response to an amplified intermediate signal from a respective one of the amplifiers. In operation, the elemental signals interfere with one another to form a transmission beam, such as a battery-charging, or other high-power, transmission beam.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 7, 2022
    Assignee: Searete LLC
    Inventors: Matthew S. Reynolds, Guy Lipworth, Joseph Hagerty, Daniel Arnitz, Yaroslav Aleksandrovich Urzhumov
  • Patent number: 11271300
    Abstract: An embodiment of an antenna array includes a cavity, signal couplers, and antenna elements. The cavity is configured to reinforce a reference signal (e.g., a standing reference wave) having a wavelength ?, and each of the signal couplers is configured to generate a respective intermediate signal in response to the reference signal at a respective location of the cavity. And each of the antenna elements (e.g., conductive patches) is configured to radiate a respective elemental signal in response to an intermediate signal from a respective one of the signal couplers. In operation, the elemental signals interfere with one another to form a transmission beam. Controlling the cavity to introduce phase differences between the antenna elements can allow a wider pitch between adjacent antenna elements without the need for large, costly phase shifters, where the pitch can approach its theoretical limit of approximately ?/2.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: March 8, 2022
    Assignee: Searete LLC
    Inventors: Matthew S. Reynolds, Guy Lipworth, Joseph Hagerty, Daniel Arnitz, Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20200067187
    Abstract: An embodiment of an antenna configured to form a high-power beam, such as a battery-charging beam, includes a transmission structure, signal couplers, amplifiers, and antenna elements. The transmission structure (e.g., a waveguide) is configured to carry a reference signal (e.g., a traveling reference wave), and each of the signal couplers is configured to generate a respective intermediate signal in response to the reference signal at a respective location along the transmission structure. Each of the amplifiers is configured to amplify, selectively, an intermediate signal from a respective one of the couplers, and each of the antenna elements (e.g., conductive patches) is configured to radiate a respective elemental signal in response to an amplified intermediate signal from a respective one of the amplifiers. In operation, the elemental signals interfere with one another to form a transmission beam, such as a battery-charging, or other high-power, transmission beam.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Searete LLC
    Inventors: Matthew S. Reynolds, Guy Lipworth, Joseph Hagerty, Daniel Arnitz, Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20200067186
    Abstract: An embodiment of an antenna array includes a cavity, signal couplers, and antenna elements. The cavity is configured to reinforce a reference signal (e.g., a standing reference wave) having a wavelength A, and each of the signal couplers is configured to generate a respective intermediate signal in response to the reference signal at a respective location of the cavity. And each of the antenna elements (e.g., conductive patches) is configured to radiate a respective elemental signal in response to an intermediate signal from a respective one of the signal couplers. In operation, the elemental signals interfere with one another to form a transmission beam. Controlling the cavity to introduce phase differences between the antenna elements can allow a wider pitch between adjacent antenna elements without the need for large, costly phase shifters, where the pitch can approach its theoretical limit of approximately ?/2.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Searete LLC
    Inventors: Matthew S. Reynolds, Guy Lipworth, Joseph Hagerty, Daniel Arnitz, Yaroslav Aleksandrovich Urzhumov
  • Patent number: 10236955
    Abstract: An embodiment of a system includes a transmitter and a receiver that is remote from the transmitter. The transmitter includes a first number of transmit antennas and a signal generator. The transmit antennas are each spaced from another of the transmit antennas by approximately a distance and configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. And the signal generator is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number related to a third number of signal pipes, and to couple each of the second number of signals to a respective one of the transmit antennas. The receiver includes a fourth number of antennas and a signal analyzer.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: March 19, 2019
    Assignee: Elwha LLC
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Patent number: 10236947
    Abstract: An embodiment of a system includes a first number of antennas, a transmitter, and a receiver. The antennas are each spaced from another of the antennas by approximately a distance and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The transmitter is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number related to a third number of signal pipes, and to couple each of the second number of signals to a respective one of the antennas. And the receiver is configured to receive from at least one of the antennas a fourth number of signals each having a wavelength that is greater than twice the distance, and to recover information from each of the fourth number of signals, the fourth number being related to the third number.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: March 19, 2019
    Assignee: Elwha LLC
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Patent number: 9800310
    Abstract: An embodiment of a transmitter includes a first number of antennas and a signal generator. The antennas are each spaced from another of the antennas by approximately a distance, and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The signal generator is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number being related to a third number of signal pipes. And the signal generator is configured to couple each of the signals to a respective one of the antennas. Such a transmitter can be a multiple-input-multiple-output orthogonal-frequency-division-multiplexing (OFDM-MIMO) transmitter that can be configured to increase the information-carrying capacity of a channel (i.e., increase the channel capacity) above and beyond a saturation capacity of the channel.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 24, 2017
    Assignee: Elwha LLC
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Patent number: 9780853
    Abstract: An embodiment of a receiver includes a first number of antennas and a signal analyzer. The antennas are each spaced from another of the antennas by approximately a distance, and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The signal analyzer is configured to recover information from a second number of signals each received by at least one of the antennas over a respective one of a third number of signal pipes, and each having a wavelength that is greater than twice the distance, the second number being related to the third number. Such a receiver can be a multiple-input-multiple-output orthogonal-frequency-division-multiplexing (OFDM-MIMO) receiver that can be configured to increase the information-carrying capacity of a channel (i.e., increase the channel capacity) above and beyond a saturation capacity of the channel.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 3, 2017
    Assignee: Elwha LLC
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20170244454
    Abstract: An embodiment of a transmitter includes a first number of antennas and a signal generator. The antennas are each spaced from another of the antennas by approximately a distance, and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The signal generator is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number being related to a third number of signal pipes. And the signal generator is configured to couple each of the signals to a respective one of the antennas. Such a transmitter can be a multiple-input-multiple-output orthogonal-frequency-division-multiplexing (OFDM-MIMO) transmitter that can be configured to increase the information-carrying capacity of a channel (i.e., increase the channel capacity) above and beyond a saturation capacity of the channel.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20170244450
    Abstract: An embodiment of a system includes a transmitter and a receiver that is remote from the transmitter. The transmitter includes a first number of transmit antennas and a signal generator. The transmit antennas are each spaced from another of the transmit antennas by approximately a distance and configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. And the signal generator is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number related to a third number of signal pipes, and to couple each of the second number of signals to a respective one of the transmit antennas. The receiver includes a fourth number of antennas and a signal analyzer.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20170244453
    Abstract: An embodiment of a receiver includes a first number of antennas and a signal analyzer. The antennas are each spaced from another of the antennas by approximately a distance, and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The signal analyzer is configured to recover information from a second number of signals each received by at least one of the antennas over a respective one of a third number of signal pipes, and each having a wavelength that is greater than twice the distance, the second number being related to the third number. Such a receiver can be a multiple-input-multiple-output orthogonal-frequency-division-multiplexing (OFDM-MIMO) receiver that can be configured to increase the information-carrying capacity of a channel (i.e., increase the channel capacity) above and beyond a saturation capacity of the channel.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventor: Yaroslav Aleksandrovich Urzhumov
  • Publication number: 20170244455
    Abstract: An embodiment of a system includes a first number of antennas, a transmitter, and a receiver. The antennas are each spaced from another of the antennas by approximately a distance and are configured to provide, at one or more wavelengths that are greater than twice the distance, a channel capacity that exceeds a saturation channel capacity. The transmitter is configured to generate a second number of signals each having a wavelength that is greater than twice the distance, the second number related to a third number of signal pipes, and to couple each of the second number of signals to a respective one of the antennas. And the receiver is configured to receive from at least one of the antennas a fourth number of signals each having a wavelength that is greater than twice the distance, and to recover information from each of the fourth number of signals, the fourth number being related to the third number.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventor: Yaroslav Aleksandrovich Urzhumov