Patents by Inventor Yaroslav Oliinyk
Yaroslav Oliinyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12175241Abstract: A software package is received which encapsulates a plurality of files which are then extracted. For those files that cannot be identified, an embedding is generated. Different file types can employ different embedding generating techniques. Using this embedding, a set of potential software packages to the file from which the embedding was generated is calculated. This calculation can use, for example, one or more similarity analysis techniques relative to a set of mapped packages and embeddings (i.e., a set of known software packages and embeddings corresponding to known constituent files, etc.). The calculation can be used to determine an identity of the software package. The determined identity can be provided to a consuming application or process. Related apparatus, systems, techniques and articles are also described.Type: GrantFiled: July 22, 2024Date of Patent: December 24, 2024Assignee: NetRise, Inc.Inventors: Michael Scott, Yaroslav Oliinyk
-
Publication number: 20240378291Abstract: Under one aspect, a method is provided for protecting a device from a malicious file. The method can be implemented by one or more data processors forming part of at least one computing device and can include extracting from the file, by at least one data processor, sequential data comprising discrete tokens. The method also can include generating, by at least one data processor, n-grams of the discrete tokens. The method also can include generating, by at least one data processor, a vector of weights based on respective frequencies of the n-grams. The method also can include determining, by at least one data processor and based on a statistical analysis of the vector of weights, that the file is likely to be malicious. The method also can include initiating, by at least one data processor and responsive to determining that the file is likely to be malicious, a corrective action.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Inventors: Li Li, Xuan Zhao, Sepehr Akhavan-Masouleh, John Hendershott Brock, Yaroslav Oliinyk, Matthew Wolff
-
Publication number: 20220405572Abstract: Systems, methods, and software can be used for securing in-tunnel messages. One example of a method includes obtaining a parsed file that comprises two or more sub-feature trees, and each of the two or more sub-feature trees comprise at least one feature layer that comprises features. The method further includes generating a feature vector that identifies the features in the at least one feature layer for each of the two or more sub-feature trees. The method yet further includes mapping the features in the at least one feature layer for each of the one or more sub-feature trees to a corresponding position in the feature vector. By converting features in the parsed file into a feature vector, the method provides an applicable format of the feature vector in wide applications for the parsed file.Type: ApplicationFiled: June 17, 2021Publication date: December 22, 2022Inventors: Yaroslav OLIINYK, David Neill BEVERIDGE, David Michael LIEBSON, Lichun Lily JIA, Eric Glen PETERSEN
-
Patent number: 11436520Abstract: Systems and methods are provided herein for redaction of artificial intelligence (AI) training documents. Data comprising an unredacted document is received. The unredacted document comprises a plurality of objects arranged according to a first topology. The unredacted document is parsed to identify objects either directly or relationally containing user sensitive information using a predetermined rule set based on the first topology. The user sensitive information within the unredacted document is substituted with placeholder information to generate a redacted document having a second topology. The second topology is substantially identical to the first topology. In some variations, the redacted document is provided to an AI model for training.Type: GrantFiled: March 7, 2017Date of Patent: September 6, 2022Assignee: Cylance Inc.Inventors: David Neill Beveridge, Yaroslav Oliinyk, David Michael Liebson
-
Patent number: 11430244Abstract: A method and computing device for statistical data fingerprinting and tracing data similarity of documents. The method comprises applying a statistical function to a subset of text in a first document thereby generating a first fingerprint; applying the statistical function to a subset of text in a second document thereby generating a second fingerprint; comparing the first fingerprint to the second fingerprint; and determining that the subset of text in the first document matches the subset of text in the second document based on the first fingerprint threshold matching the second fingerprint, wherein the statistical function is a measure of randomness of a count of each character in a subset of text against an expected distribution of said characters.Type: GrantFiled: December 23, 2020Date of Patent: August 30, 2022Assignee: Cylance Inc.Inventors: David Neill Beveridge, David Michael Liebson, Yaroslav Oliinyk
-
Patent number: 11386308Abstract: An artefact is received and parsed into a plurality of observations. A first subset of the observations are inputted into a machine learning model trained using historical data to classify the artefact. In addition, a second subset of the observations are inputted into a xenospace centroid configured to classify the artefact. Thereafter, the artefact is classified based on a combination of an output of the machine learning model and an output of xenospace centroid. Related apparatus, systems, techniques and articles are also described.Type: GrantFiled: December 13, 2018Date of Patent: July 12, 2022Assignee: Cylance Inc.Inventors: David N. Beveridge, Hailey Buckingham, Yaroslav Oliinyk, Eric Petersen
-
Publication number: 20220198189Abstract: A method and computing device for statistical data fingerprinting and tracing data similarity of documents. The method comprises applying a statistical function to a subset of text in a first document thereby generating a first fingerprint; applying the statistical function to a subset of text in a second document thereby generating a second fingerprint; comparing the first fingerprint to the second fingerprint; and determining that the subset of text in the first document matches the subset of text in the second document based on the first fingerprint threshold matching the second fingerprint, wherein the statistical function is a measure of randomness of a count of each character in a subset of text against an expected distribution of said characters.Type: ApplicationFiled: December 23, 2020Publication date: June 23, 2022Inventors: David Neill BEVERIDGE, David Michael LIEBSON, Yaroslav OLIINYK
-
Patent number: 11283818Abstract: A system is provided for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The memory may include program code which when executed by the at least one processor provides operations including: processing a container file with a trained machine learning model, wherein the trained machine learning is trained to determine a classification for the container file indicative of whether the container file includes at least one file rendering the container file malicious; and providing, as an output by the trained machine learning model, an indication of whether the container file includes the at least one file rendering the container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: GrantFiled: April 28, 2020Date of Patent: March 22, 2022Assignee: Cylance Inc.Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Michael Wallace, Andy Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Thomas Wojnowicz, Derek A. Soeder, David N. Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Patent number: 11188646Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The at least one memory may include program code that provides operations when executed by the at least one processor. The operations may include: training, based on a training data, a machine learning model to enable the machine learning model to determine whether at least one container file includes at least one file rendering the at least one container file malicious; and providing the trained machine learning model to enable the determination of whether the at least one container file includes at least one file rendering the at least one container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: GrantFiled: October 24, 2019Date of Patent: November 30, 2021Assignee: Cylance Inc.Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andy Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Publication number: 20200342102Abstract: Under one aspect, a method is provided for protecting a device from a malicious file. The method can be implemented by one or more data processors forming part of at least one computing device and can include extracting from the file, by at least one data processor, sequential data comprising discrete tokens. The method also can include generating, by at least one data processor, n-grams of the discrete tokens. The method also can include generating, by at least one data processor, a vector of weights based on respective frequencies of the n-grams. The method also can include determining, by at least one data processor and based on a statistical analysis of the vector of weights, that the file is likely to be malicious. The method also can include initiating, by at least one data processor and responsive to determining that the file is likely to be malicious, a corrective action.Type: ApplicationFiled: July 15, 2020Publication date: October 29, 2020Inventors: Li Li, Xuan Zhao, Sepehr Akhavan-Masouleh, John Hendershott Brock, Yaroslav Oliinyk, Matthew Wolff
-
Patent number: 10754948Abstract: Under one aspect, a method is provided for protecting a device from a malicious file. The method can be implemented by one or more data processors forming part of at least one computing device and can include extracting from the file, by at least one data processor, sequential data comprising discrete tokens. The method also can include generating, by at least one data processor, n-grams of the discrete tokens. The method also can include generating, by at least one data processor, a vector of weights based on respective frequencies of the n-grams. The method also can include determining, by at least one data processor and based on a statistical analysis of the vector of weights, that the file is likely to be malicious. The method also can include initiating, by at least one data processor and responsive to determining that the file is likely to be malicious, a corrective action.Type: GrantFiled: April 18, 2017Date of Patent: August 25, 2020Assignee: Cylance Inc.Inventors: Li Li, Xuan Zhao, Sepehr Akhavan-Masouleh, John Hendershott Brock, Yaroslav Oliinyk, Matthew Wolff
-
Publication number: 20200259850Abstract: A system is provided for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The memory may include program code which when executed by the at least one processor provides operations including: processing a container file with a trained machine learning model, wherein the trained machine learning is trained to determine a classification for the container file indicative of whether the container file includes at least one file rendering the container file malicious; and providing, as an output by the trained machine learning model, an indication of whether the container file includes the at least one file rendering the container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: ApplicationFiled: April 28, 2020Publication date: August 13, 2020Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Michael Wallace, Andy Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Thomas Wojnowicz, Derek A. Soeder, David N. Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Publication number: 20200193242Abstract: An artefact is received and parsed into a plurality of observations. A first subset of the observations are inputted into a machine learning model trained using historical data to classify the artefact. In addition, a second subset of the observations are inputted into a xenospace centroid configured to classify the artefact. Thereafter, the artefact is classified based on a combination of an output of the machine learning model and an output of xenospace centroid. Related apparatus, systems, techniques and articles are also described.Type: ApplicationFiled: December 13, 2018Publication date: June 18, 2020Inventors: David N. Beveridge, Hailey Buckingham, Yaroslav Oliinyk, Eric Petersen
-
Patent number: 10637874Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The memory may include program code which when executed by the at least one processor provides operations including: processing a container file with a trained machine learning model, wherein the trained machine learning is trained to determine a classification for the container file indicative of whether the container file includes at least one file rendering the container file malicious; and providing, as an output by the trained machine learning model, an indication of whether the container file includes the at least one file rendering the container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: GrantFiled: November 7, 2016Date of Patent: April 28, 2020Assignee: Cylance Inc.Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andrew Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Publication number: 20200057853Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The at least one memory may include program code that provides operations when executed by the at least one processor. The operations may include: training, based on a training data, a machine learning model to enable the machine learning model to determine whether at least one container file includes at least one file rendering the at least one container file malicious; and providing the trained machine learning model to enable the determination of whether the at least one container file includes at least one file rendering the at least one container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: ApplicationFiled: October 24, 2019Publication date: February 20, 2020Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andy Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Patent number: 10503901Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The at least one memory may include program code that provides operations when executed by the at least one processor. The operations may include: training, based on a training data, a machine learning model to enable the machine learning model to determine whether at least one container file includes at least one file rendering the at least one container file malicious; and providing the trained machine learning model to enable the determination of whether the at least one container file includes at least one file rendering the at least one container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: GrantFiled: November 7, 2016Date of Patent: December 10, 2019Assignee: Cylance Inc.Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andy Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Publication number: 20180300482Abstract: Under one aspect, a method is provided for protecting a device from a malicious file. The method can be implemented by one or more data processors forming part of at least one computing device and can include extracting from the file, by at least one data processor, sequential data comprising discrete tokens. The method also can include generating, by at least one data processor, n-grams of the discrete tokens. The method also can include generating, by at least one data processor, a vector of weights based on respective frequencies of the n-grams. The method also can include determining, by at least one data processor and based on a statistical analysis of the vector of weights, that the file is likely to be malicious. The method also can include initiating, by at least one data processor and responsive to determining that the file is likely to be malicious, a corrective action.Type: ApplicationFiled: April 18, 2017Publication date: October 18, 2018Inventors: Li Ll, Xuan Zhao, Sepehr Akhavan-Masouleh, John Hendershott Brock, Yaroslav Oliinyk, Matthew Wolff
-
Publication number: 20180260734Abstract: Systems and methods are provided herein for redaction of artificial intelligence (AI) training documents. Data comprising an unredacted document is received. The unredacted document comprises a plurality of objects arranged according to a first topology. The unredacted document is parsed to identify objects either directly or relationally containing user sensitive information using a predetermined rule set based on the first topology. The user sensitive information within the unredacted document is substituted with placeholder information to generate a redacted document having a second topology. The second topology is substantially identical to the first topology. In some variations, the redacted document is provided to an AI model for training.Type: ApplicationFiled: March 7, 2017Publication date: September 13, 2018Inventors: David Neill Beveridge, Yaroslav Oliinyk, David Michael Liebson
-
Publication number: 20180060580Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The at least one memory may include program code that provides operations when executed by the at least one processor. The operations may include: training, based on a training data, a machine learning model to enable the machine learning model to determine whether at least one container file includes at least one file rendering the at least one container file malicious; and providing the trained machine learning model to enable the determination of whether the at least one container file includes at least one file rendering the at least one container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: ApplicationFiled: November 7, 2016Publication date: March 1, 2018Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andrew Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh
-
Publication number: 20180063169Abstract: In one respect, there is provided a system for training a machine learning model to detect malicious container files. The system may include at least one processor and at least one memory. The memory may include program code which when executed by the at least one processor provides operations including: processing a container file with a trained machine learning model, wherein the trained machine learning is trained to determine a classification for the container file indicative of whether the container file includes at least one file rendering the container file malicious; and providing, as an output by the trained machine learning model, an indication of whether the container file includes the at least one file rendering the container file malicious. Related methods and articles of manufacture, including computer program products, are also disclosed.Type: ApplicationFiled: November 7, 2016Publication date: March 1, 2018Inventors: Xuan Zhao, Matthew Wolff, John Brock, Brian Wallace, Andrew Wortman, Jian Luan, Mahdi Azarafrooz, Andrew Davis, Michael Wojnowicz, Derek Soeder, David Beveridge, Yaroslav Oliinyk, Ryan Permeh