Patents by Inventor Yasar Halefoglu

Yasar Halefoglu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7125912
    Abstract: A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: October 24, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20060083914
    Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
    Type: Application
    Filed: April 26, 2005
    Publication date: April 20, 2006
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Chan, Meng-ying Chen, Chinh Do
  • Patent number: 7026362
    Abstract: A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 11, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Patent number: 7000885
    Abstract: A mold is configured to form a gel monolith including a first gel portion and a second gel portion. The mold includes a base including a first hydrophobic surface. The mold further includes a tubular outer wall including a second hydrophobic surface, and the outer wall is coupled to the base. The mold further includes a removable tubular insert including an inner surface and an outer hydrophobic surface. The insert is removably coupled to the base.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: February 21, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu
  • Patent number: 7001568
    Abstract: A method processes a gel monolith comprising pores filled with liquid, an inner region, and an outer region. The method includes removing a portion of the liquid from the pores of the gel monolith while both the inner and outer regions of the gel monolith remain wet. The method further includes shrinking the volume of the gel monolith during the removal of a portion of the liquid, with the gel monolith becoming correspondingly more dense. The method further includes subsequently removing substantially all of the remaining liquid from the pores of the gel monolith. Subsequently removing substantially all of the remaining liquid includes modulating a temperature gradient between the outer region and the inner region.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: February 21, 2006
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Ryan White, Yasar Halefoglu
  • Patent number: 6928220
    Abstract: A method forms an optical fiber preform. The method includes forming a sol-gel-derived rod having a first diameter. Forming the sol-gel-derived rod includes preparing a sol-gel solution including at least 3 mole % of a catalyst. The sol-gel solution is allowed to undergo gelation to form a wet gel monolith. The wet gel monolith is dried and shrunk by exposing the wet gel monolith to a temporal temperature profile, thereby forming a xerogel monolith. The xerogel monolith is consolidated, thereby forming the sol-gel-derived rod. The method further includes drawing the sol-gel-derived rod to substantially reduce its diameter, thereby forming a drawn rod having a second diameter less than the first diameter.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: August 9, 2005
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng
  • Patent number: 6884822
    Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: April 26, 2005
    Assignee: Simax Technologies, Inc.
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20030151173
    Abstract: A method processes a gel monolith comprising pores filled with liquid, an inner region, and an outer region. The method includes removing a portion of the liquid from the pores of the gel monolith while both the inner and outer regions of the gel monolith remain wet. The method further includes shrinking the volume of the gel monolith during the removal of a portion of the liquid, with the gel monolith becoming correspondingly more dense. The method further includes subsequently removing substantially all of the remaining liquid from the pores of the gel monolith. Subsequently removing substantially all of the remaining liquid includes modulating a temperature gradient between the outer region and the inner region.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 14, 2003
    Inventors: Shiho Wang, Ryan White, Yasar Halefoglu
  • Publication number: 20030147606
    Abstract: An optical preform includes plural material components including a core material and a cladding material. A component of the optical preform is manufactured by a process of preparing a sol-gel solution comprising at least 3 mole % of a catalyst. The process further includes forming a wet gel monolith by allowing the sol-gel solution to undergo gelation. The process further includes drying and shrinking the wet gel monolith by exposing the wet gel monolith to a temporal temperature profile.
    Type: Application
    Filed: August 7, 2002
    Publication date: August 7, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-Hsing Cheng
  • Publication number: 20030147605
    Abstract: A method forms an optical fiber preform. The method includes forming a sol-gel-derived rod having a first diameter. Forming the sol-gel-derived rod includes preparing a sol-gel solution including at least 3 mole % of a catalyst. The sol-gel solution is allowed to undergo gelation to form a wet gel monolith. The wet gel monolith is dried and shrunk by exposing the wet gel monolith to a temporal temperature profile, thereby forming a xerogel monolith. The xerogel monolith is consolidated, thereby forming the sol-gel-derived rod. The method further includes drawing the sol-gel-derived rod to substantially reduce its diameter, thereby forming a drawn rod having a second diameter less than the first diameter.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-Hsing Cheng
  • Publication number: 20030148053
    Abstract: A mold is configured to form a gel monolith including a first gel portion and a second gel portion. The mold includes a base including a first hydrophobic surface. The mold further includes a tubular outer wall including a second hydrophobic surface, and the outer wall is coupled to the base. The mold further includes a removable tubular insert including an inner surface and an outer hydrophobic surface. The insert is removably coupled to the base.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu
  • Publication number: 20030078153
    Abstract: A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.
    Type: Application
    Filed: August 7, 2002
    Publication date: April 24, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20030069122
    Abstract: A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
  • Publication number: 20030068266
    Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
    Type: Application
    Filed: April 5, 2002
    Publication date: April 10, 2003
    Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do