Patents by Inventor Yasato Kiyohara

Yasato Kiyohara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11338242
    Abstract: Provided is a method for removing CO2 comprising: supplying a gas to be processed containing CO2, N2 and O2 to a feed side of a CO2/O2 selective permeation membrane within a temperature range of 15° C. to 50° C.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 24, 2022
    Assignees: Renaissance Energy Research Corporation, Japan Aerospace Exploration Agency
    Inventors: Osamu Okada, Masaaki Teramoto, Tamotsu Nonouchi, Nobuaki Hanai, Junya Miyata, Yasato Kiyohara, Masato Sakurai, Shinichi Furukawa
  • Publication number: 20210008491
    Abstract: Provided is a method for removing CO2 comprising: supplying a gas to be processed containing CO2, N2 and O2 to a feed side of a CO2/O2 selective permeation membrane within a temperature range of 15° C. to 50° C.
    Type: Application
    Filed: December 27, 2017
    Publication date: January 14, 2021
    Applicants: Renaissance Energy Research Corporation, Japan Aerospace Exploration Agency
    Inventors: Osamu OKADA, Masaaki TERAMOTO, Tamotsu NONOUCHI, Nobuaki HANAI, Junya MIYATA, Yasato KIYOHARA, Masato SAKURAI, Shinichi FURUKAWA
  • Patent number: 10858248
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: December 8, 2020
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Junya Miyata, Yasato Kiyohara, Sayaka Ishii, Megumi Nagano
  • Patent number: 10744454
    Abstract: Provided are a CO2 gas separation membrane, a method for manufacturing the same, and a carbon dioxide gas separation membrane module including the same, the CO2 gas separation membrane including: a first layer (A) containing at least one alkali metal compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate and an alkali metal hydroxide, and a first resin in which a polymer having a carboxyl group has been crosslinked; a second layer (B) containing at least one of the alkali metal compounds, and a second resin having a structural unit derived from a vinyl ester of a fatty acid; and a hydrophobic porous membrane (C).
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: August 18, 2020
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara
  • Patent number: 10507434
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: December 17, 2019
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara, Atsushi Yamamoto
  • Patent number: 10232319
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: March 19, 2019
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara, Atsushi Yamamoto
  • Publication number: 20180244520
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: OSAMU OKADA, NOBUAKI HANAI, PENG YAN, JUNYA MIYATA, YASATO KIYOHARA, SAYAKA ISHII, MEGUMI NAGANO
  • Patent number: 9981847
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 29, 2018
    Assignee: RENAISSANCE ENERGY RESARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Junya Miyata, Yasato Kiyohara, Sayaka Ishii, Megumi Nagano
  • Publication number: 20170333833
    Abstract: Provided are a CO2 gas separation membrane, a method for manufacturing the same, and a carbon dioxide gas separation membrane module including the same, the CO2 gas separation membrane including: a first layer (A) containing at least one alkali metal compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate and an alkali metal hydroxide, and a first resin in which a polymer having a carboxyl group has been crosslinked; a second layer (B) containing at least one of the alkali metal compounds, and a second resin having a structural unit derived from a vinyl ester of a fatty acid; and a hydrophobic porous membrane (C).
    Type: Application
    Filed: November 17, 2015
    Publication date: November 23, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai OTA, Yoshihito OKUBO, Osamu OKADA, Nobuaki HANAI, Peng YAN, Yasato KIYOHARA
  • Publication number: 20170232398
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 17, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai OTA, Yoshihito OKUBO, Osamu OKADA, Nobuaki HANAI, Peng YAN, Yasato KIYOHARA, Atsushi YAMAMOTO
  • Publication number: 20160272494
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicant: Renaissance Energy Research Corporation
    Inventors: Osamu OKADA, Nobuaki HANAI, Peng YAN, Junya MIYATA, Yasato KIYOHARA, Sayaka ISHII, Megumi NAGANO
  • Patent number: 9381464
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 5, 2016
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Junya Miyata, Yasato Kiyohara, Sayaka Ishii, Megumi Nagano
  • Patent number: 9242206
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing at least carbon dioxide, nitrogen and water vapor, the energy utilization efficiency thereof is improved. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively. When the second mixture gas is supplied, the second separation membrane 34 separates water vapor that permeates through the second separation membrane 34 by allowing water vapor to permeate selectively.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 26, 2016
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Publication number: 20150151243
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Application
    Filed: October 1, 2013
    Publication date: June 4, 2015
    Applicant: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Junya Miyata, Yasato Kiyohara, Sayaka Ishii, Megumi Nagano
  • Publication number: 20140290479
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing at least carbon dioxide, nitrogen and water vapor, the energy utilization efficiency thereof is improved. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively. When the second mixture gas is supplied, the second separation membrane 34 separates water vapor that permeates through the second separation membrane 34 by allowing water vapor to permeate selectively.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: OSAMU OKADA, MASAAKI TERAMOTO, EIJI KAMIO, NOBUAKI HANAI, YASATO KIYOHARA
  • Patent number: 8784531
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 22, 2014
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Publication number: 20130287678
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 31, 2013
    Applicant: Renaissance Energy Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara