Patents by Inventor Yashas Malur Saidutta

Yashas Malur Saidutta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240046946
    Abstract: A method includes obtaining, using at least one processing device, noisy speech signals and extracting, using the at least one processing device, acoustic features from the noisy speech signals. The method also includes receiving, using the at least one processing device, a predicted speech mask from a speech mask prediction model based on a first acoustic feature subset and receiving, using the at least one processing device, a predicted noise mask from a noise mask prediction model based on a second acoustic feature subset. The method further includes providing, using the at least one processing device, predicted speech features determined using the predicted speech mask and predicted noise features determined using the predicted noise mask to a filtering mask prediction model. In addition, the method includes generating, using the at least one processing device, a clean speech signal using a predicted filtering mask output by the filtering mask prediction model.
    Type: Application
    Filed: November 22, 2022
    Publication date: February 8, 2024
    Inventors: Chou-Chang Yang, Ching-Hua Lee, Rakshith Sharma Srinivasa, Yashas Malur Saidutta, Yilin Shen, Hongxia Jin
  • Patent number: 11795804
    Abstract: A drilling device may use a concurrent path planning process to create a path from a starting location to a destination location within a subterranean environment. The drilling device can receive sensor data. A probability distribution can be generated from the sensor data indicating one or more likely materials compositions that make up each portion of the subterranean environment. The probability distribution can be sampled, and for each sample, a drill path trajectory and drill parameters for the trajectory can be generated. A trained neural network may evaluate each trajectory and drill parameters to identify the most ideal trajectory based on the sensor data. The drilling device may then initiate drilling operations for a predetermined distance along the ideal trajectory.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 24, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Yashas Malur Saidutta, Srinath Madasu, Shashi Dande, Keshava Prasad Rangarajan, Raja Vikram R. Pandya, Jeffrey M. Yarus, Robello Samuel
  • Publication number: 20230116456
    Abstract: Systems and methods for automated drilling control and optimization are disclosed. Training data, including values of drilling parameters, for a current stage of a drilling operation are acquired. A reinforcement learning model is trained to estimate values of the drilling parameters for a subsequent stage of the drilling operation to be performed, based on the acquired training data and a reward policy mapping inputs and outputs of the model. The subsequent stage of the drilling operation is performed based on the values of the drilling parameters estimated using the trained model. A difference between the estimated and actual values of the drilling parameters is calculated, based on real-time data acquired during the subsequent stage of the drilling operation. The reinforcement learning model is retrained to refine the reward policy, based on the calculated difference. At least one additional stage of the drilling operation is performed using the retrained model.
    Type: Application
    Filed: June 5, 2020
    Publication date: April 13, 2023
    Inventors: Yashas Malur Saidutta, Raja Vikram R Pandya, Srinath Madasu, Shashi Dande, Keshava Rangarajan
  • Publication number: 20220316278
    Abstract: Geosteering can be used in a drilling operation to create a wellbore that is used to extract hydrocarbons from a defined zone within the subterranean formation. According to some aspects, generating paths for the wellbore may include using path-planning protocols and pure-pursuit protocols. The pure-pursuit protocol may be executed to output a plurality of candidate drilling paths. The output may also include control parameters for controlling the drill bit. A trajectory optimizer may determine a result of multi-objective functions for each candidate path. A cost function may represent a cost or loss associated with a candidate path. Additionally, the trajectory optimizer may perform an optimization protocol, such as Bayesian optimization, on the cost functions to determine which candidate path to select. The selected candidate path may correspond to new control parameters for controlling the drill bit to reach the target location.
    Type: Application
    Filed: February 10, 2020
    Publication date: October 6, 2022
    Inventors: Raja Vikram Raj Pandya, Srinath Madasu, Keshava Prasad Rangarajan, Shashi Dande, Yashas Malur Saidutta
  • Publication number: 20210404313
    Abstract: A drilling device may use a concurrent path planning process to create a path from a starting location to a destination location within a subterranean environment. The drilling device can receive sensor data. A probability distribution can be generated from the sensor data indicating one or more likely materials compositions that make up each portion of the subterranean environment. The probability distribution can be sampled, and for each sample, a drill path trajectory and drill parameters for the trajectory can be generated. A trained neural network may evaluate each trajectory and drill parameters to identify the most ideal trajectory based on the sensor data. The drilling device may then initiate drilling operations for a predetermined distance along the ideal trajectory.
    Type: Application
    Filed: July 12, 2019
    Publication date: December 30, 2021
    Inventors: Yashas Malur Saidutta, Srinath Madasu, Shashi Dande, Keshava Prasad Rangarajan, Raja Vikram R. Pandya, Jeffrey M. Yarus, Robello Samuel