Patents by Inventor Yashwant K. Ameen

Yashwant K. Ameen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6317076
    Abstract: A method and apparatus for calibrating range in a radar system. Due mainly to temperature changes in a radar system which cause frequency deviation error, range errors can be introduced into the radar system, thus adversely affecting the determination of the position of targets relative to the host platform. These range errors can be corrected by detecting and accurately estimating the frequency deviation error of a radar system. The present invention improves target position determination performance in a radar system by reducing errors introduced by the frequency deviation error. The present invention relies upon the observation that the Doppler range rate is largely unaffected by frequency deviation error, and thus, is approximately equal to the actual range rate. In accordance with a first range calibration technique of the present invention, the radar system measures the range, Doppler range rate, and azimuth angle of a target during at least two successive time instances.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: November 13, 2001
    Assignee: Eaton-VORAD Technologies, L.L.C.
    Inventors: Yashwant K. Ameen, Patrick Anthony Ryan, Thomas W. Gingell
  • Patent number: 6121919
    Abstract: A method and apparatus for calibrating range in a radar system. Due mainly to temperature changes in a radar system which cause frequency deviation error, range errors can be introduced into the radar system, thus adversely affecting the determination of the position of targets relative to the host platform. These range errors can be corrected by detecting and accurately estimating the frequency deviation error of a radar system. The present invention improves target position determination performance in a radar system by reducing errors introduced by the frequency deviation error. The present invention relies upon the observation that the Doppler range rate is largely unaffected by frequency deviation error, and thus, is approximately equal to the actual range rate. In accordance with a first range calibration technique of the present invention, the radar system measures the range, Doppler range rate, and azimuth angle of a target during at least two successive time instances.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: September 19, 2000
    Assignee: Eaton-VORAD Technologies, L.L.C.
    Inventors: Yashwant K. Ameen, Patrick Anthony Ryan, Thomas W. Gingell
  • Patent number: 5977906
    Abstract: A method and apparatus for calibrating azimuth boresight in a radar system. Antenna boresight misalignment can cause radar systems to inaccurately determine the position of targets relative to a platform vehicle. These errors can be corrected by detecting and accurately measuring a boresight offset angle defined as the angle between the radar antenna boresight and the direction of travel of the host platform vehicle. Several antenna boresight calibration techniques are described. A first technique calculates the boresight offset angle by obtaining target range and azimuth angle measurements at two instants in time. The boresight offset angle is determined by the geometric relationship of the offset angle, target range and azimuth values obtained at two successive time instants. A refined approach obtains target range and azimuth values at several successive time instants, calculating interim boresight offset angles at each time instant.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: November 2, 1999
    Assignee: Eaton Vorad Technologies, L.L.C.
    Inventors: Yashwant K. Ameen, Patrick Anthony Ryan
  • Patent number: 4583178
    Abstract: A strapped-down intertial system for a vehicle including computational means and a sensor package. The sensor package includes a first part (1) fixedly mounted on the vehicle, and a second part (5) which is rotatable about a first axis (Z). On the second part (5) are fixedly mounted gyroscopic means (13, 15) responsive to rotation about two axes, one of which is the first axis (Z), and accelerometer means (9, 11) responsive to acceleration along two axes, one of which is not the same as either of the two axes of the gyroscopic means (13, 15). The computational means is arranged to calculate the heading of the vehicle from the outputs of the gyroscopic means and accelerometer means taken with the first part (1) stationary, and the second part (5) successively in at least three different angular positions about the first axis (Z).
    Type: Grant
    Filed: October 31, 1983
    Date of Patent: April 15, 1986
    Assignee: Marconi Avionics Limited
    Inventors: Yashwant K. Ameen, Rodney Pearson