Patents by Inventor YASMIN MUSSA

YASMIN MUSSA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813674
    Abstract: Presented here are nanocomposites and electrochemical storage systems (e.g., rechargeable batteries and supercapacitors), which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for electrochemical storage systems (e.g., rechargeable batteries and supercapacitors) operated at high temperature and high pressure, and methods of making the same.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 14, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Nada Althubaiti, Zahra Bayhan, Yasmin Mussa
  • Patent number: 11658286
    Abstract: Presented in the present disclosure are nanocomposites and rechargeable batteries which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for rechargeable batteries operated at high temperature and high pressure. The nanocomposites include a plurality of transition metal oxide nanoparticles, a plurality of ultrathin sheets of a first two-dimensional (2D) material, and a plurality of ultrathin sheets of a different 2D material, which act in synergy to provide an improved thermal stability, an increased surface area, and enhanced electrochemical properties to the nanocomposites. For example, rechargeable batteries that include the nanocomposites as an electrode material have an enhanced performance and stability over a broad temperature range from room temperature to high temperatures.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: May 23, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa, Faheem Ahmed
  • Publication number: 20220238860
    Abstract: An electrode that includes a nanocomposite and sulfur is provided. The nanocomposite includes from 0.1 to 15 wt. % of a metal oxide, carbon, and h-BN. Also provided is a lithium-sulfur battery that has an anode, a cathode, a separator and an electrolyte. The cathode of the lithium-sulfur battery includes the nanocomposite and sulfur. A method of preparing an electrode is also provided. The method includes milling a metal precursor, carbon, and h-BN to make a precursor mixture and heating the precursor mixture to a predetermined temperature in the presence of oxygen to form the nanocomposite. The method then includes mixing the nanocomposite with sulfur to create an electrode mixture, and forming an electrode from the electrode mixture.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 28, 2022
    Applicants: SAUDI ARABIAN OIL COMPANY, ALFAISAL UNIVERSITY
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa
  • Publication number: 20210008628
    Abstract: Presented here are nanocomposites and rechargeable batteries. In certain embodiments, nanocomposites a nanocomposite is resistant to thermal runaway, and useful as an electrode material in rechargeable batteries that are safe, reliable, and stable when operated at high temperature and high pressure. The present disclosure also provides methods of preparing rechargeable batteries. For example, rechargeable batteries that include nanocomposites of the present disclosure as an electrode material have, in some embodiments, an enhanced performance and stability over a broad temperature range from room temperature to high temperatures. These batteries fill an important need by providing a safe and reliable power source for devices operated at high temperatures and pressures such as downhole equipment used in the oil industry.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 14, 2021
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa
  • Publication number: 20210013492
    Abstract: Presented here are nanocomposites and electrochemical storage systems (e.g., rechargeable batteries and supercapacitors), which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for electrochemical storage systems (e.g., rechargeable batteries and supercapacitors) operated at high temperature and high pressure, and methods of making the same.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 14, 2021
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Nada Althubaiti, Zahra Bayhan, Yasmin Mussa
  • Patent number: 10608137
    Abstract: A novel perovskite layer to form a solar cell using 2D material with titanium dioxide are made using microwave technology is described. A specific layers of 2D nanocomposite is deposited between the Flourine-doped tin oxide (FTO) glass and hole transport material to make a more efficient perovskite solar cell is disclosed. The 2D materials are reduced graphene oxide, graphene oxide, hexagonal boron nitride (h-BN), transitional metal dichalcogenides, transition metal carbides, transitional metal nitrides etc. or a combination of the two 2D materials that are used as the mesoporous layer in perovskites.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 31, 2020
    Assignee: Alfaisal University
    Inventors: Edreese H Alsharaeh, Sultan Barkah Alhoshan, Yasmin Mussa Ahmed Mussa, Abdulrahman Mohammed Albadri
  • Patent number: 10424782
    Abstract: Presented in the present disclosure are nanocomposites and rechargeable batteries which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for rechargeable batteries operated at high temperature and high pressure. The nanocomposites include a plurality of transition metal oxide nanoparticles, a plurality of ultrathin sheets of a first two-dimensional (2D) material, and a plurality of ultrathin sheets of a different 2D material, which act in synergy to provide an improved thermal stability, an increased surface area, and enhanced electrochemical properties to the nanocomposites. For example, rechargeable batteries that include the nanocomposites as an electrode material have an enhanced performance and stability over a broad temperature range from room temperature to high temperatures.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: September 24, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa, Faheem Ahmed
  • Publication number: 20190214633
    Abstract: Presented in the present disclosure are nanocomposites and rechargeable batteries which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for rechargeable batteries operated at high temperature and high pressure. The nanocomposites include a plurality of transition metal oxide nanoparticles, a plurality of ultrathin sheets of a first two-dimensional (2D) material, and a plurality of ultrathin sheets of a different 2D material, which act in synergy to provide an improved thermal stability, an increased surface area, and enhanced electrochemical properties to the nanocomposites. For example, rechargeable batteries that include the nanocomposites as an electrode material have an enhanced performance and stability over a broad temperature range from room temperature to high temperatures.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 11, 2019
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa, Faheem Ahmed
  • Publication number: 20190214634
    Abstract: Presented in the present disclosure are nanocomposites and rechargeable batteries which are resistant to thermal runaway and are safe, reliable, and stable electrode materials for rechargeable batteries operated at high temperature and high pressure. The nanocomposites include a plurality of transition metal oxide nanoparticles, a plurality of ultrathin sheets of a first two-dimensional (2D) material, and a plurality of ultrathin sheets of a different 2D material, which act in synergy to provide an improved thermal stability, an increased surface area, and enhanced electrochemical properties to the nanocomposites. For example, rechargeable batteries that include the nanocomposites as an electrode material have an enhanced performance and stability over a broad temperature range from room temperature to high temperatures.
    Type: Application
    Filed: February 7, 2019
    Publication date: July 11, 2019
    Inventors: Muhammad Arsalan, Edreese Alsharaeh, Yasmin Mussa, Faheem Ahmed
  • Patent number: 10149862
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: December 11, 2018
    Assignee: Alfaisal University
    Inventors: Edreese H Alsharaeh, Faheem Ahmed, Nishat Arshi, Yasmin Mussa, Meshael Alturki, Yazeed Aldawsari, Azmat Khan
  • Publication number: 20170136062
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Applicant: ALFAISAL UNIVERSITY
    Inventors: Edreese H. Alsharaeh, Faheem Ahmed, NISHAT ARSHI, YASMIN MUSSA, MESHAEL ALTURKI, YAZEED ALDAWSARI, AZMAT KHAN