Patents by Inventor Yasu Osako

Yasu Osako has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190001442
    Abstract: Apparatus and techniques for laser-processing workpieces can be improved, and new functionalities can be provided. Some embodiments discussed relate to processing of workpieces in a manner resulting in enhanced accuracy, throughput, etc. Other embodiments relate to realtime Z-height measurement and, when suitable, compensation for certain Z-height deviations. Still other embodiments relate to modulation of scan patterns, beam characteristics, etc., to facilitate feature formation, avoid undesirable heat accumulation, or otherwise enhance processing throughput. A great number of other embodiments and arrangements are also detailed.
    Type: Application
    Filed: September 8, 2016
    Publication date: January 3, 2019
    Inventors: Mark Unrath, Chuan Yang, Jan Kleinert, Mark Peeples, Hugh Owens, Gwendolyn Byrne, Haibin Zhang, Justin Redd, Corie Neufeld, James D. Brookhyser, Yasu Osako, Mehmet Alpay, Zhibin Lin, Patrick Riechel, Tim Nuckolls, Hisashi Matsumoto, Chris Ryder
  • Patent number: 10118252
    Abstract: Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: November 6, 2018
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Mark Unrath, Mark Kosmowski
  • Publication number: 20150239064
    Abstract: Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Mark Unrath, Mark Kosmowski
  • Patent number: 9029731
    Abstract: Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: May 12, 2015
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Mark Unrath, Mark Kosmowski
  • Patent number: 8729427
    Abstract: A process to cut sheet material using a laser is improved by performing a first plurality of routings using a first toolpath for the laser and performing at least a second routing using a second toolpath for the laser after performing the first plurality of routings using the first toolpath, the second toolpath traverse from a kerf formed by the laser as a result of performing the first plurality of routings. A z-height shift can be simultaneously implemented with the transverse shift. By shifting the toolpath, interference of plasma generated during laser processing is minimized by maximizing the coupling of the laser and the material, resulting in less discoloration and/or burning of the material.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: May 20, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Yasu Osako
  • Patent number: 8679948
    Abstract: An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 25, 2014
    Assignee: Electro Scientific Industries, Inc
    Inventors: Yasu Osako, Daragh Finn
  • Publication number: 20140003067
    Abstract: A panel includes a plurality of microholes arranged in a pattern and filled with light transmissive polymeric material. The light transmissive polymeric material occludes the microholes and is set, or cured, by exposure to an energy source using at least two discrete exposure periods separated by an idle or rest period. The uniformity of the microholes is thereby improved.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: Electro Scientific Industries, Inc.
    Inventor: Yasu Osako
  • Patent number: 8609512
    Abstract: An improved method for singulation of compound electronic devices is presented. Compound electronic devices are manufactured by combining two or more substrates into an assembly containing multiple devices. Presented are methods for singulation of compound electronic devices using laser processing. The methods presented provide fewer defects such as cracking or chipping of the substrates while minimizing the width of the kerf and maintaining system throughput.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 17, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Peter Pirogovsky, Jeffery A. Albelo, James O'Brien, Yasu Osako
  • Patent number: 8598490
    Abstract: Tailored laser pulse shapes are used for processing workpieces. Laser dicing of semiconductor device wafers on die-attach film (DAF), for example, may use different tailored laser pulse shapes for scribing device layers down to a semiconductor substrate, dicing the semiconductor substrate, cutting the underlying DAF, and/or post processing of the upper die edges to increase die break strength. Different mono-shape laser pulse trains may be used for respective recipe steps or passes of a laser beam over a scribe line. In another embodiment, scribing a semiconductor device wafer includes only a single pass of a laser beam along a scribe line using a mixed-shape laser pulse train that includes at least two laser pulses that are different than one another. In addition, or in other embodiments, one or more tailored pulse shapes may be selected and provided to the workpiece on-the-fly. The selection may be based on sensor feedback.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 3, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Andrew Hooper, David Barsic, Kelly J. Bruland, Daragh S. Finn, Lynn Sheehan, Xiaoyuan Peng, Yasu Osako, Jim Dumestre, William J. Jordens
  • Publication number: 20130237035
    Abstract: An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 12, 2013
    Applicant: ELECTRO SCIENTIFIC, INDUSTRIES, INC.
    Inventors: Yasu OSAKO, Daragh FINN
  • Patent number: 8524127
    Abstract: Methods of manufacturing a panel and resulting panels include a plurality of microholes arranged in a pattern and filled with light transmissive polymeric material. The light transmissive polymeric material occludes the microholes and is set, or cured, by exposure to an energy source using at least two discrete exposure periods separated by an idle or rest period.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Yasu Osako
  • Patent number: 8383984
    Abstract: An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: February 26, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Daragh Finn
  • Publication number: 20120160814
    Abstract: Systems and methods ablate electrically conductive links using laser pulses with optimized temporal power profiles and/or polarizations. In certain embodiments, the polarization property of a laser beam is set such that coupling between the laser beam and an electrically conductive link reduces the pulse energy required to ablate the electrically conductive link. In one such embodiment, the polarization is selected based on a depth of a target link structure. In another embodiment, the polarization changes as deeper material is removed from a target location. In addition, or in other embodiments, a first portion of a temporal power profile of a laser beam includes a rapid rise time to heat an upper portion of an electrically conductive link so as to form cracks in a passivation layer over upper corners of the electrically conductive link, without forming cracks at lower corners of the electrically conductive link.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 28, 2012
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Kelly J. Bruland, Andrew Hooper, Jim Dumestre, David Lord
  • Patent number: 8208506
    Abstract: Systems and methods generate laser pulse trains for material processing. In one embodiment, stable laser pulse trains at high repetition rates are generated from a continuous wave (CW) or quasi-CW laser beams. One or more laser pulses in the laser pulse train may be shaped to control energy delivered to a target material. In another embodiment, multiple laser beams are distributed to multiple processing heads from a single laser pulse, CW laser beam, or quasi-CW laser beam. In one such embodiment, a single optical deflector distributes multiple laser beams among respective processing heads.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 26, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Hisashi Matsumoto
  • Patent number: 8116341
    Abstract: Dual-beam laser outputs, preferably derived from a single laser beam, improve the quality of the sidewalls of vias drilled in a target material, such as printed circuit board, comprising fiber-reinforced resin. Two embodiments each use two laser output components to remove a portion of target material from a target material location of a workpiece and rapidly clean remnants of the target material bonded to a metal layer underlying the target material location at a material removal rate. A first embodiment entails directing for incidence on a portion of the target material at the target material location a processing laser output having first and second components characterized by respective first and second wavelengths. A second embodiment entails directing for incidence on a portion of the target material at the target material location a processing laser output having first and second components characterized by respective first and pulse widths.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: February 14, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Weisheng Lei, Yunlong Sun, Yasu Osako, John Davignon, Glenn Simenson, Hisashi Matsumoto
  • Publication number: 20110298156
    Abstract: Tailored laser pulse shapes are used for processing workpieces. Laser dicing of semiconductor device wafers on die-attach film (DAF), for example, may use different tailored laser pulse shapes for scribing device layers down to a semiconductor substrate, dicing the semiconductor substrate, cutting the underlying DAF, and/or post processing of the upper die edges to increase die break strength. Different mono-shape laser pulse trains may be used for respective recipe steps or passes of a laser beam over a scribe line. In another embodiment, scribing a semiconductor device wafer includes only a single pass of a laser beam along a scribe line using a mixed-shape laser pulse train that includes at least two laser pulses that are different than one another. In addition, or in other embodiments, one or more tailored pulse shapes may be selected and provided to the workpiece on-the-fly. The selection may be based on sensor feedback.
    Type: Application
    Filed: March 31, 2011
    Publication date: December 8, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Andrew Hooper, David Barsic, Kelly J. Bruland, Daragh S. Finn, Lynn Sheehan, Xiaoyuan Peng, Yasu Osako, Jim Dumestre, William J. Jordens
  • Publication number: 20110287607
    Abstract: Laser singulation of electronic devices from semiconductor substrates including wafers is performed using up to 3 lasers from 2 wavelength ranges. Using up to 3 lasers from 2 wavelength ranges permits laser singulation of wafers held by die attach film while avoiding problems caused by single-wavelength dicing. In particular, using up to 3 lasers from 2 wavelength ranges permits efficient dicing of semiconductor wafers while avoiding debris and thermal problems associated with laser processing die attach tape.
    Type: Application
    Filed: March 30, 2011
    Publication date: November 24, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Bong Cho, Daragh Finn, Andrew Hooper, James O'Brien
  • Publication number: 20110240616
    Abstract: An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Daragh Finn
  • Publication number: 20110236645
    Abstract: Methods of manufacturing a panel and resulting panels include a plurality of microholes arranged in a pattern and filled with light transmissive polymeric material. The light transmissive polymeric material occludes the microholes and is set, or cured, by exposure to an energy source using at least two discrete exposure periods separated by an idle or rest period.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventor: Yasu Osako
  • Publication number: 20110085574
    Abstract: Systems and methods generate laser pulse trains for material processing. In one embodiment, stable laser pulse trains at high repetition rates are generated from a continuous wave (CW) or quasi-CW laser beams. One or more laser pulses in the laser pulse train may be shaped to control energy delivered to a target material. In another embodiment, multiple laser beams are distributed to multiple processing heads from a single laser pulse, CW laser beam, or quasi-CW laser beam. In one such embodiment, a single optical deflector distributes multiple laser beams among respective processing heads.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 14, 2011
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yasu Osako, Hisashi Matsumoto