Patents by Inventor Yasuaki Kagotoshi

Yasuaki Kagotoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10199481
    Abstract: A method for manufacturing a semiconductor device includes carrying out a first heat treatment accompanied by nitration on a first insulating film and a silicon carbide substrate in a first gas atmosphere, after the carrying out of the first heat treatment and after a temperature of the silicon carbide substrate has become 700° C. or less, removing the silicon carbide substrate from a processing apparatus and exposing the silicon carbide substrate to air in an atmosphere outside of the processing apparatus, and after the exposing of the silicon carbide substrate to air in the atmosphere, carrying out a second heat treatment on the first insulating film and the silicon carbide substrate in a second gas atmosphere which is an inert gas.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: February 5, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Masaki Hama, Yasuaki Kagotoshi
  • Publication number: 20170229557
    Abstract: A method for manufacturing a semiconductor device includes carrying out a first heat treatment accompanied by nitration on a first insulating film and a silicon carbide substrate in a first gas atmosphere, after the carrying out of the first heat treatment and after a temperature of the silicon carbide substrate has become 700° C. or less, removing the silicon carbide substrate from a processing apparatus and exposing the silicon carbide substrate to air in an atmosphere outside of the processing apparatus, and after the exposing of the silicon carbide substrate to air in the atmosphere, carrying out a second heat treatment on the first insulating film and the silicon carbide substrate in a second gas atmosphere which is an inert gas.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Inventors: Masaki HAMA, Yasuaki KAGOTOSHI
  • Patent number: 9646824
    Abstract: To form a MOSFET over a silicon carbide substrate, when a heat treatment accompanied by nitration is carried out to reduce the interface state density in the vicinity of the boundary between a gate insulating film and a silicon carbide substrate, CV hysteresis occurs due to the relationship between the capacitance and gate voltage of the MOSFET, thereby reducing the reliability of a semiconductor device. To solve the above problem, a heat treatment accompanied by nitration is carried out on the insulating film formed over the silicon carbide substrate (step S7). Then, the insulating film is heated in an inert gas atmosphere (step S9). Thereafter, a field effect transistor having a gate insulating film which is composed of the insulating film is formed over the silicon carbide substrate.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: May 9, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Masaki Hama, Yasuaki Kagotoshi
  • Patent number: 9570602
    Abstract: The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: February 14, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Koichi Arai, Masaki Hama, Yasuaki Kagotoshi, Kenichi Hisada
  • Patent number: 9543395
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Grant
    Filed: November 9, 2014
    Date of Patent: January 10, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu
  • Patent number: 9466734
    Abstract: To provide a semiconductor device having a vertical JFET excellent in off-state performance without reducing a production yield. A gate region quadrangular in the cross-section along a channel width direction is formed below a source region by impurity ion implantation. By first etching, the source region over the upper surface of the gate region is removed to separate therebetween. Then, the upper surface of the gate region is processed by second etching having an etching rate lower at the side surface than at the center of the gate region. The resulting gate region has a lower surface parallel to the substrate surface and an upper surface below a boundary between the source region and the channel formation region and having, in the cross-section along the channel width direction, a downward slope from the side surface to the center. As a result, a channel length with reduced variations can be obtained.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: October 11, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Kenichi Hisada
  • Publication number: 20160225892
    Abstract: The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Koichi ARAI, Masaki HAMA, Yasuaki KAGOTOSHI, Kenichi HISADA
  • Patent number: 9406743
    Abstract: A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n?-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n?-type drift layer with a silicon oxide film formed on the n?-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n?-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n?-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: August 2, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yasuaki Kagotoshi, Koichi Arai, Natsuki Yokoyama, Haruka Shimizu
  • Patent number: 9337327
    Abstract: The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: May 10, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Koichi Arai, Masaki Hama, Yasuaki Kagotoshi, Kenichi Hisada
  • Publication number: 20150380541
    Abstract: The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 31, 2015
    Inventors: Koichi ARAI, Masaki HAMA, Yasuaki KAGOTOSHI, Kenichi HISADA
  • Publication number: 20150236089
    Abstract: A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n?-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n?-type drift layer with a silicon oxide film formed on the n?-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n?-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n?-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventors: Yasuaki KAGOTOSHI, Koichi ARAI, Natsuki YOKOYAMA, Haruka SHIMIZU
  • Publication number: 20150214047
    Abstract: To form a MOSFET over a silicon carbide substrate, when a heat treatment accompanied by nitration is carried out to reduce the interface state density in the vicinity of the boundary between a gate insulating film and a silicon carbide substrate, CV hysteresis occurs due to the relationship between the capacitance and gate voltage of the MOSFET, thereby reducing the reliability of a semiconductor device. To solve the above problem, a heat treatment accompanied by nitration is carried out on the insulating film formed over the silicon carbide substrate (step S7). Then, the insulating film is heated in an inert gas atmosphere (step S9). Thereafter, a field effect transistor having a gate insulating film which is composed of the insulating film is formed over the silicon carbide substrate.
    Type: Application
    Filed: January 13, 2015
    Publication date: July 30, 2015
    Inventors: Masaki HAMA, Yasuaki Kagotoshi
  • Patent number: 9048264
    Abstract: A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n?-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n?-type drift layer with a silicon oxide film formed on the n?-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n?-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n?-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: June 2, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuaki Kagotoshi, Koichi Arai, Natsuki Yokoyama, Haruka Shimizu
  • Patent number: 9041049
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 26, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu
  • Publication number: 20150060887
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Application
    Filed: November 9, 2014
    Publication date: March 5, 2015
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu
  • Publication number: 20150035015
    Abstract: To provide a semiconductor device having a vertical JFET excellent in off-state performance without reducing a production yield. A gate region quadrangular in the cross-section along a channel width direction is formed below a source region by impurity ion implantation. By first etching, the source region over the upper surface of the gate region is removed to separate therebetween. Then, the upper surface of the gate region is processed by second etching having an etching rate lower at the side surface than at the center of the gate region. The resulting gate region has a lower surface parallel to the substrate surface and an upper surface below a boundary between the source region and the channel formation region and having, in the cross-section along the channel width direction, a downward slope from the side surface to the center. As a result, a channel length with reduced variations can be obtained.
    Type: Application
    Filed: July 8, 2014
    Publication date: February 5, 2015
    Inventors: Koichi ARAI, Yasuaki KAGOTOSHI, Kenichi HISADA
  • Publication number: 20140284625
    Abstract: A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n?-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n?-type drift layer with a silicon oxide film formed on the n?-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n?-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n?-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yasuaki KAGOTOSHI, Koichi ARAI, Natsuki YOKOYAMA, Haruka SHIMIZU
  • Publication number: 20130334542
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Koichi ARAI, Yasuaki KAGOTOSHI, Nobuo MACHIDA, Natsuki YOKOYAMA, Haruka SHIMIZU
  • Patent number: 8524552
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: September 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu
  • Publication number: 20120193641
    Abstract: In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 2, 2012
    Inventors: Koichi Arai, Yasuaki Kagotoshi, Nobuo Machida, Natsuki Yokoyama, Haruka Shimizu