Patents by Inventor Yasuei YONEOKA

Yasuei YONEOKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097508
    Abstract: A rotary electric machine (1000) including: a rotor (200); a stator (100) surrounding a periphery of the rotor (200); a first recessed portion (133) disposed in an inner circumferential surface of a back yoke (130) of the stator (100), and extending in an axial direction of the stator (100); and a tooth (120) having one end fitted in the first recessed portion (133), a clearance formed between the first recessed portion (133) and the one end of the tooth (120) fitted in the first recessed portion (133) being smaller in a circumferential direction of the stator (100) than in a radial direction of the stator (100).
    Type: Application
    Filed: November 24, 2021
    Publication date: March 21, 2024
    Inventors: Hirooki TOKOI, Mizuki NAKAHARA, Toshifumi SUZUKI, Masaru AMAIKE, Shuuichi TAKAHASHI, Yasuei YONEOKA, Toru SAKAI
  • Patent number: 11165312
    Abstract: This invention reduces the shaft voltage of an axial-air-gap dynamo-electric machine while ensuring high output and high efficiency. Said axial-air-gap dynamo-electric machine comprises the following: a stator comprising a plurality of stator cores, each of which comprises a core and a coil, arranged in a circle around a shaft; a housing, the inside surface of which faces the stator radially; and at least one rotor, the surface of which faces the surface of the stator with a prescribed air gap interposed therebetween in the radial direction of the shaft. The rotor has, on the outside thereof, a conductive section comprising a conductive member. This axial-air-gap dynamo-electric machine has a first region where the inside surface of the housing faces the aforementioned conductive section radially and a second region, closer to the stator than the first region is, that extends to the coil side surfaces that face the rotor.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: November 2, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hirooki Tokoi, Shuuichi Takahashi, Yasuei Yoneoka, Toshifumi Suzuki, Toru Sakai, Katsuyuki Yamazaki, Norihisa Iwasaki, Ryousou Masaki, Yuji Enomoto
  • Patent number: 11139714
    Abstract: A conventional axial gap rotary electric machine does not consider winding movement caused by resin molding in the vicinity of a lead-out part provided to a housing. In order to solve the problem, the axial gap rotary electric machine according to the present invention includes a stator which is formed by circularly arranging a plurality of core units having coils about a rotation shaft and which has a connecting wire that fastens, for each layer, coil rising wires from the plurality of core units, and the axial gap rotary electric machine has a configuration in which: the housing has a lead-out part through which the connecting wire is taken out to the outside of the housing; and the stator is arranged such that the region where the coil rising wire from the core unit is fastened with the connecting wire is located so as to avoid the region opposed to the lead-out part, the stator being integrally molded.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: October 5, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Yasuei Yoneoka, Shuuichi Takahashi, Toshifumi Suzuki, Toru Sakai, Katsuyuki Yamazaki, Daisaku Takahashi, Daisuke Kurai
  • Publication number: 20210288568
    Abstract: Provided is an axial gap type rotating electric machine in which the distance between the stator-facing surface of a permanent magnet constituting a rotor and a stator can be uniformed even if distortion and unevenness caused by a processing error are present in a rotor base, the permanent magnet, and the like.
    Type: Application
    Filed: January 30, 2017
    Publication date: September 16, 2021
    Inventors: Daisaku TAKAHASHI, Jun SAKURAI, Toru SAKAI, Shuuichi TAKAHASHI, Yasuei YONEOKA
  • Patent number: 11050316
    Abstract: There is provided an axial gap rotary electric machine which includes a stator in which a plurality of core units, the core units having a core, a winding disposed in an outer periphery of the core, and a bobbin disposed between the core and the winding, are arranged in an annular shape about a rotation shaft, at least one rotor which faces an end surface of the core in an axial direction through a gap, a rotation shaft which rotates together with the rotor, and a housing in which the stator and the rotor are stored. A wiring fixing member is provided in an end surface and on an outer side of the stator in the axial direction, and includes an outer wall and an inner wall extending in a circumferential direction along a circumferential outer shape of the stator. The stator includes a crossover wire which leads the winding from the core unit. The crossover wire is disposed between the outer wall and the inner wall of the wiring fixing member.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 29, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Yasuei Yoneoka, Shuuichi Takahashi, Toshifumi Suzuki, Katsuyuki Yamazaki, Daisaku Takahashi, Daisuke Kurai, Jun Sakurai
  • Publication number: 20210135530
    Abstract: A conventional axial gap rotary electric machine does not consider winding movement caused by resin molding in the vicinity of a lead-out part provided to a housing. In order to solve the problem, the axial gap rotary electric machine according to the present invention includes a stator which is formed by circularly arranging a plurality of core units having coils about a rotation shaft and which has a connecting wire that fastens, for each layer, coil rising wires from the plurality of core units, and the axial gap rotary electric machine has a configuration in which: the housing has a lead-out part through which the connecting wire is taken out to the outside of the housing; and the stator is arranged such that the region where the coil rising wire from the core unit is fastened with the connecting wire is located so as to avoid the region opposed to the lead-out part, the stator being integrally molded.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 6, 2021
    Inventors: Yasuei YONEOKA, Shuuichi TAKAHASHI, Toshifumi SUZUKI, Toru SAKAI, Katsuyuki YAMAZAKI, Daisaku TAKAHASHI, Daisuke KURAI
  • Patent number: 10992203
    Abstract: The purpose of the present invention is to ensure reliability and installation space reduction of crossover wires of an axial gap type rotary electric machine. An axial gap type rotary electric machine having: a stator which is constructed by annularly arranging multiple core units about an axis of rotation, each of the core units having at least a core, windings disposed around the outer periphery of the core, and crossover wires leading out from the windings; at least one rotor which faces an axial end surface of the cores with a gap therebetween; and a rotary shaft which rotates along with the rotor.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: April 27, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hirooki Tokoi, Shuuichi Takahashi, Yasuei Yoneoka, Toshifumi Suzuki, Kenji Uzawa, Katsuyuki Yamazaki, Toru Sakai, Ryousou Masaki
  • Patent number: 10886803
    Abstract: This axial gap-type rotary electrical machine has: a stator in which a plurality of core units each configured from a core, a coil, and a bobbin are disposed, centered around a rotating shaft, in an annular shape along the inner circumferential surface of a housing; and a rotor that is face-to-face with a cross-sectional surface of the core through a predetermined gap in a radial direction of the rotating shaft. The bobbin is formed in a cylindrical shape, has flange parts extending a predetermined amount in the outer circumferential direction at the top and bottom of the cylindrical shape, is provided with notch sections on the tip part in the inner circumferential direction of the flange part of the bobbin, and forms an acute angle. In addition, approximately circular notch sections are formed on adjacent side surface portions of the bobbin in the outer circumferential direction of the bobbin.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: January 5, 2021
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Shuuichi Takahashi, Yasuei Yoneoka, Toshifumi Suzuki, Toru Sakai, Katsuyuki Yamazaki, Daisaku Takahashi, Daisuke Kurai, Jun Sakurai
  • Publication number: 20200395808
    Abstract: The purpose of the present invention is to ensure reliability and installation space reduction of crossover wires of an axial gap type rotary electric machine. An axial gap type rotary electric machine having: a stator which is constructed by annularly arranging multiple core units about an axis of rotation, each of the core units having at least a core, windings disposed around the outer periphery of the core, and crossover wires leading out from the windings; at least one rotor which faces an axial end surface of the cores with a gap therebetween; and a rotary shaft which rotates along with the rotor.
    Type: Application
    Filed: May 18, 2016
    Publication date: December 17, 2020
    Inventors: Hirooki TOKOI, Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Kenji UZAWA, Katsuyuki YAMAZAKI, Toru SAKAI, Ryousou MASAKI
  • Publication number: 20200021179
    Abstract: This axial gap-type rotary electrical machine has: a stator in which a plurality of core units each configured from a core, a coil, and a bobbin are disposed centering around a rotary shaft, in an annular shape along the inner circumferential surface of a housing; and a rotor that is face-to-face with a cross-sectional surface of the core through a predetermined gap in the radial direction of the rotary shaft. The rotor comprises a rotor base which is provided with a disk-shaped permanent magnet and an end portion gripping the outer circumference of the permanent magnet, and which holds the permanent magnet. The thickness of the end portion of the rotor base decreases toward the stator side. In particular, the end portion of the rotor base is formed in a tapered shape in which the thickness of the end portion decreases toward the stator side. In addition, the end portion of the rotor base is formed such that high portions and low portions are periodically provided over the circumferential direction.
    Type: Application
    Filed: January 31, 2017
    Publication date: January 16, 2020
    Applicant: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Daisaku TAKAHASHI, Daisuke KURAI, Jun SAKURAI, Masayuki YOSHIDA
  • Patent number: 10530210
    Abstract: To ensure ready assembly of a stator and reliably reduce the shaft voltage in an axial air gap rotating electric machine, an axial air gap rotating electric machine has a circular ring-shaped stator formed by a plurality of stator cores arranged about a rotational axis direction in a ring shape. Each stator core comprises a tubular bobbin and a coil, with the tubular bobbin having an iron core inserted into a bobbin inner tubular portion substantially matching the peripheral shape of the iron core. The axial air gap rotating electric machine has a first conductive member having a horizontal portion and a vertical portion contacting the end surface of the bobbin opening portion. The horizontal portion contacts parts of the iron core outer peripheral surface and the inner peripheral surface of the bobbin inner tubular portion, and the vertical portion is conductively connected to the inner circumferential housing surface.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: January 7, 2020
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hirooki Tokoi, Shuuichi Takahashi, Yasuei Yoneoka, Toshifumi Suzuki, Toru Sakai, Katsuyuki Yamazaki, Ryousou Masaki, Norihisa Iwasaki, Yuji Enomoto
  • Patent number: 10523100
    Abstract: The present invention provides an axial air-gap rotary electric machine with which it is possible to achieve downsizing and increased output as well as an improvement in the support strength of a molded resin and housing and a reduction in the manufacturing cost of the housing. Provided is an axial air-gap rotary electric machine having: a stator in which a plurality of core members, which have at least an iron core and a coil, are arranged in a circular shape centered around a rotating shaft and curved around the inner peripheral surface of a housing; and a rotor that faces an end surface of the iron core with a prescribed air gap therebetween in the radial direction of the rotating shaft. Therein, the housing has, in the surface facing the stator, a hole that communicates with the outside, and the stator has a resin molded portion formed by filling a resin into at least the surface of the core members facing the inner peripheral surface of the housing, and into the hole, and molding integrally.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: December 31, 2019
    Assignee: HITACHI INDUSTRIAL EQUIPMENT SYSTEMS CO., LTD.
    Inventors: Hirooki Tokoi, Shuuichi Takahashi, Yasuei Yoneoka, Shinya Yamaji, Toshifumi Suzuki, Katsuyuki Yamazaki, Toru Sakai, Ryousou Masaki
  • Publication number: 20190245418
    Abstract: This axial gap-type rotary electrical machine has: a stator in which a plurality of core units each configured from a core, a coil, and a bobbin are disposed, centered around a rotating shaft, in an annular shape along the inner circumferential surface of a housing; and a rotor that is face-to-face with a cross-sectional surface of the core through a predetermined gap in a radial direction of the rotating shaft. The bobbin is formed in a cylindrical shape, has flange parts extending a predetermined amount in the outer circumferential direction at the top and bottom of the cylindrical shape, is provided with notch sections on the tip part in the inner circumferential direction of the flange part of the bobbin, and forms an acute angle. In addition, approximately circular notch sections are formed on adjacent side surface portions of the bobbin in the outer circumferential direction of the bobbin.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 8, 2019
    Inventors: Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Toru SAKAI, Katsuyuki YAMAZAKI, Daisaku TAKAHASHI, Daisuke KURAI, Jun SAKURAI
  • Publication number: 20190199158
    Abstract: A rotating electrical machine that comprises: a stator in which a plurality of core units that have a core and a coil are annularly arranged around a shaft center; a rotor that faces a flux end surface of the stator in the shaft-center direction with a prescribed gap therebetween; a housing that houses the stator and the rotor and has an outlet that guides a lead wire for the stator to the outside; and a resin that integrally molds the stator and an inner circumferential surface of the housing that includes the outlet. The inner diameter of the outlet becomes larger from the shaft-center side to the radial-direction outside. The outlet has an elastic member that keeps the resin from flowing to the outside of the housing. The elastic member has a hollow part through which the lead wire passes from the shaft-center side to the radial-direction outside. Pressure from a rotary-shaft radial direction seals between the hollow part and the lead wire.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 27, 2019
    Inventors: Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Toru SAKAI, Daisaku TAKAHASHI, Jun SAKURAI, Daisuke KURAI
  • Publication number: 20190157935
    Abstract: There is provided an axial gap rotary electric machine which includes a stator in which a plurality of core units, the core units having a core, a winding disposed in an outer periphery of the core, and a bobbin disposed between the core and the winding, are arranged in an annular shape about a rotation shaft, at least one rotor which faces an end surface of the core in an axial direction through a gap, a rotation shaft which rotates together with the rotor, and a housing in which the stator and the rotor are stored. A wiring fixing member is provided in an end surface and on an outer side of the stator in the axial direction, and includes an outer wall and an inner wall extending in a circumferential direction along a circumferential outer shape of the stator. The stator includes a crossover wire which leads the winding from the core unit. The crossover wire is disposed between the outer wall and the inner wall of the wiring fixing member.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 23, 2019
    Inventors: Yasuei YONEOKA, Shuuichi TAKAHASHI, Toshifumi SUZUKI, Katsuyuki YAMAZAKI, Daisaku TAKAHASHI, Daisuke KURAI, Jun SAKURAI
  • Publication number: 20170194823
    Abstract: This invention reduces the shaft voltage of an axial-air-gap dynamo-electric machine while ensuring high output and high efficiency. Said axial-air-gap dynamo-electric machine comprises the following: a stator comprising a plurality of stator cores, each of which comprises a core and a coil, arranged in a circle around a shaft; a housing, the inside surface of which faces the stator radially; and at least one rotor, the surface of which faces the surface of the stator with a prescribed air gap interposed therebetween in the radial direction of the shaft. The rotor has, on the outside thereof, a conductive section comprising a conductive member. This axial-air-gap dynamo-electric machine has a first region where the inside surface of the housing faces the aforementioned conductive section radially and a second region, closer to the stator than the first region is, that extends to the coil side surfaces that face the rotor.
    Type: Application
    Filed: April 14, 2014
    Publication date: July 6, 2017
    Inventors: Hirooki TOKOI, Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Toru SAKAI, Katsuyuki YAMAZAKI, Norihisa IWASAKI, Ryousou MASAKI, Yuji ENOMOTO
  • Publication number: 20170155297
    Abstract: To ensure ready assembly of a stator and reliably reduce the shaft voltage in an axial air gap rotating electric machine, an axial air gap rotating electric machine has a circular ring-shaped stator formed by a plurality of stator cores arranged about a rotational axis direction in a ring shape. Each stator core comprises a tubular bobbin and a coil, with the tubular bobbin having an iron core inserted into a bobbin inner tubular portion substantially matching the peripheral shape of the iron core. The axial air gap rotating electric machine has a first conductive member having a horizontal portion and a vertical portion contacting the end surface of the bobbin opening portion. The horizontal portion contacts parts of the iron core outer peripheral surface and the inner peripheral surface of the bobbin inner tubular portion, and the vertical portion is conductively connected to the inner circumferential housing surface.
    Type: Application
    Filed: April 11, 2014
    Publication date: June 1, 2017
    Inventors: Hirooki TOKOI, Shuuichi TAKAHASHI, Yasuei YONEOKA, Toshifumi SUZUKI, Toru SAKAI, Katsuyuki YAMAZAKI, Ryousou MASAKI, Norihisa IWASAKI, Yuji ENOMOTO
  • Publication number: 20170126108
    Abstract: The present invention provides an axial air-gap rotary electric machine with which it is possible to achieve downsizing and increased output as well as an improvement in the support strength of a molded resin and housing and a reduction in the manufacturing cost of the housing. Provided is an axial air-gap rotary electric machine having: a stator in which a plurality of core members, which have at least an iron core and a coil, are arranged in a circular shape centered around a rotating shaft and curved around the inner peripheral surface of a housing; and a rotor that faces an end surface of the iron core with a prescribed air gap therebetween in the radial direction of the rotating shaft. Therein, the housing has, in the surface facing the stator, a hole that communicates with the outside, and the stator has a resin molded portion formed by filling a resin into at least the surface of the core members facing the inner peripheral surface of the housing, and into the hole, and molding integrally.
    Type: Application
    Filed: December 8, 2014
    Publication date: May 4, 2017
    Applicant: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hirooki TOKOI, Shuuichi TAKAHASHI, Yasuei YONEOKA, Shinya YAMAJI, Toshifumi SUZUKI, Katsuyuki YAMAZAKI, Toru SAKAI, Ryousou MASAKI