Patents by Inventor Yasuhide Hayamaru

Yasuhide Hayamaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927381
    Abstract: When a controller performs a defrosting operation in which frost on an outdoor heat exchanger is caused to be melted, the controller is configured to perform a first defrosting control in which a switching state of a switching device is set to a first state, after the controller performs the first defrosting control, perform a second defrosting control in which the switching state of the switching device is set to a second state, and after the controller performs the second defrosting control, perform a third defrosting control in which the switching state of the switching device is set to the first state.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: March 12, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru, Masakazu Kondo, Masakazu Sato, Naoki Nakagawa, Atsushi Kawashima
  • Patent number: 11927376
    Abstract: A refrigeration cycle apparatus includes: a compressor; an indoor heat exchanger; an outdoor heat exchanger including first and second outdoor heat exchangers; a bypass flow passage causing a discharge side of the compressor to communicate with the first or second outdoor heat exchanger; a flow control valve at the bypass flow passage; and a controller performing a heating operation in which the first and second outdoor heat exchangers operate as an evaporator and the indoor heat exchanger operates as a condenser and a simultaneous heating and defrosting operation in which part of refrigerant the compressor discharges is supplied to one of the first and second outdoor heat exchangers through the bypass flow passage, the other of the outdoor heat exchangers operates as an evaporator, the indoor heat exchanger operates as a condenser, and an upper limit frequency of the compressor changes to a value higher than in the heating operation.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: March 12, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru, Masakazu Kondo, Masakazu Sato, Atsushi Kawashima
  • Patent number: 11920841
    Abstract: An air-conditioning apparatus includes a main circuit in which a compressor, a flow switching device, an indoor heat exchanger, a pressure reducing device, and a plurality of parallel heat exchangers connected in parallel with each other are connected by pipes, a bypass pipe, a flow control device provided to the bypass pipe and configured to adjust a flow rate of refrigerant flowing through the bypass pipe, an evaporating pressure sensor configured to measure an evaporating pressure of the refrigerant, and a controller. The air-conditioning apparatus is configured to operate in a normal heating operation mode and a heating-defrosting operation mode. When an operation associated with the normal heating operation mode is switched to an operation associated with the heating-defrosting operation mode, the controller adjusts an opening degree of the flow control device using the evaporating pressure in the parallel heat exchanger and a driving frequency of the compressor.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 5, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shohei Ishimura, Soshi Ikeda, Kazuya Watanabe, Hideto Nakao, Masakazu Kondo, Yasuhide Hayamaru, Yusuke Tashiro, Masakazu Sato, Atsushi Kawashima
  • Patent number: 11802723
    Abstract: In an air-conditioning apparatus, a first flow passage selection device and a second flow passage selection device each are a constant-energized-type three-way valve in which a position of a main valve can be fixed in a de-energized state. When the refrigerant circuit is switched to the cooling circuit by a flow switching device, when at least one of the first flow passage selection device and the second flow passage selection device is in a de-energized state, the first flow passage selection device or the second flow passage selection device in the de-energized state is configured to output refrigerant discharged from the compressor and input therein via the flow switching device and the bypass pipe to a corresponding one of an upper-side outdoor heat exchanger and a lower-side outdoor heat exchanger.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 31, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Atsushi Kawashima, Yasuhide Hayamaru, Masakazu Sato, Yusuke Adachi
  • Patent number: 11585579
    Abstract: The refrigeration cycle apparatus includes a refrigerant circuit, a controller to control the refrigerant circuit, a bypass flow path, and a flow control valve. The bypass flow path communicates between the discharge side of the compressor and the first outdoor heat exchanger or between the discharge side of the compressor and the second outdoor heat exchanger. The flow control valve is provided to the bypass flow path. The refrigerant circuit is configured to be able to perform a heating defrosting simultaneous operation. The heating defrosting simultaneous operation is an operation of supplying part of the refrigerant discharged from the compressor to one of the first outdoor heat exchanger and the second outdoor heat exchanger via the bypass flow path, causing the other of the first outdoor heat exchanger and the second outdoor heat exchanger to serve as an evaporator, and causing the indoor heat exchanger to serve as a condenser.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: February 21, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru, Masakazu Kondo, Masakazu Sato, Naoki Nakagawa, Atsushi Kawashima
  • Publication number: 20220260292
    Abstract: In an air-conditioning, first flow passage selection device and a second flow passage selection device each are a constant-energized-type three-way valve in which a position of a main valve can be fixed in a de-energized state. When the refrigerant circuit is switched to the cooling circuit by a flow switching device, when at least one of the first flow passage selection device and the second flow passage selection device is in a de-energized state, the first flow passage selection device or the second flow passage selection device in the de-energized state is configured to output refrigerant discharged from the compressor and input therein via the flow switching device and the bypass pipe to a corresponding one of an upper-side outdoor heat exchanger and a lower-side outdoor heat exchanger.
    Type: Application
    Filed: August 23, 2019
    Publication date: August 18, 2022
    Inventors: Atsushi KAWASHIMA, Yasuhide HAYAMARU, Masakazu SATO, Yusuke ADACHI
  • Publication number: 20220252314
    Abstract: A refrigeration cycle apparatus includes: a compressor; an indoor heat exchanger; an outdoor heat exchanger including first and second outdoor heat exchangers; a bypass flow passage causing a discharge side of the compressor to communicate with the first or second outdoor heat exchanger; a flow control valve at the bypass flow passage; and a controller performing a heating operation in which the first and second outdoor heat exchangers operate as an evaporator and the indoor heat exchanger operates as a condenser and a simultaneous heating and defrosting operation in which part of refrigerant the compressor discharges is supplied to one of the first and second outdoor heat exchangers through the bypass flow passage, the other of the outdoor heat exchangers operates as an evaporator, the indoor heat exchanger operates as a condenser, and an upper limit frequency of the compressor changes to a value higher than in the heating operation.
    Type: Application
    Filed: July 25, 2019
    Publication date: August 11, 2022
    Inventors: Yusuke TASHIRO, Yasuhide HAYAMARU, Masakazu KONDO, Masakazu SATO, Atsushi KAWASHIMA
  • Publication number: 20220214080
    Abstract: A refrigeration cycle apparatus includes a first flow switch valve including first to fourth ports, a second flow switch valve and a third flow switch valve each including fifth to seventh ports, a compressor, a discharge pipe connecting a discharge port of the compressor and the first port, a first high pressure pipe connecting between the discharge pipe and the fifth ports, a bypass expansion valve provided at a part of the first high pressure pipe, the part extending, a first outdoor heat exchanger connected to the seventh port of the second flow switch valve, a second outdoor heat exchanger connected to the seventh port of the third flow switch valve, and a controller. The controller is configured to perform a differential pressure ensuring process, when switching the second flow switch valve or the third flow switch valve.
    Type: Application
    Filed: September 18, 2019
    Publication date: July 7, 2022
    Inventors: Yusuke TASHIRO, Yasuhide HAYAMARU, Masakazu SATO, Masakazu KONDO, Atsushi KAWASHIMA
  • Publication number: 20220107123
    Abstract: An air-conditioning apparatus includes a main circuit in which a compressor, a flow switching device, an indoor heat exchanger, a pressure reducing device, and a plurality of parallel heat exchangers connected in parallel with each other are connected by pipes, a bypass pipe, a flow control device provided to the bypass pipe and configured to adjust a flow rate of refrigerant flowing through the bypass pipe, an evaporating pressure sensor configured to measure an evaporating pressure of the refrigerant, and a controller. The air-conditioning apparatus is configured to operate in a normal heating operation mode and a heating-defrosting operation mode. When an operation associated with the normal heating operation mode is switched to an operation associated with the heating-defrosting operation mode, the controller adjusts an opening degree of the flow control device using the evaporating pressure in the parallel heat exchanger and a driving frequency of the compressor.
    Type: Application
    Filed: March 25, 2019
    Publication date: April 7, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shohei ISHIMURA, Soshi IKEDA, Kazuya WATANABE, Hideto NAKAO, Masakazu KONDO, Yasuhide HAYAMARU, Yusuke TASHIRO, Masakazu SATO, Atsushi KAWASHIMA
  • Publication number: 20220049869
    Abstract: An air-conditioning apparatus includes a refrigerant circuit in which a compressor, an indoor heat exchanger, a first expansion device, an outdoor heat exchanger, and a flow switching device are sequentially connected to each other; a hot gas bypass pipe coupling a discharge port of the compressor and the flow switching device to each other; and a controller. The outdoor heat exchanger includes an upper heat exchanger and a lower heat exchanger having passages in parallel with each other. The outdoor heat exchanger includes a plurality of hairpin pipes, which are part of a heat transfer pipe. When the upper heat exchanger is defrosted, all hairpin pipes that are located at a lowermost step of the upper heat exchanger are used as refrigerant inlets. When the lower heat exchanger is defrosted, all hairpin pipes that are located at an uppermost step of the lower heat exchanger are used as refrigerant inlets.
    Type: Application
    Filed: December 4, 2018
    Publication date: February 17, 2022
    Inventors: Masakazu SATO, Atsushi KAWASHIMA, Yusuke TASHIRO, Yasuhide HAYAMARU
  • Patent number: 11236934
    Abstract: A refrigeration cycle apparatus includes: a first four-way valve having first to fourth ports; a second four-way valve and a third four-way valve each having fifth to eighth ports; a compressor; a discharge pipe connecting a discharge port of the compressor and the first port; a suction pipe connecting a suction port of the compressor and the second port; a first high pressure pipe connecting the discharge pipe and the fifth ports; a second high pressure pipe connecting the third port and the first high pressure pipe; a first valve provided at the first high pressure pipe; a second valve provided at the second high pressure pipe; a low pressure pipe connecting the suction pipe and the sixth ports; a first outdoor heat exchanger connected with the seventh port of the second four-way valve; a second outdoor heat exchanger connected with the seventh port of the third four-way valve; and an indoor heat exchanger connected with the fourth port.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 1, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru, Masakazu Kondo, Masakazu Sato, Naoki Nakagawa, Atsushi Kawashima
  • Publication number: 20210404710
    Abstract: A condenser includes: a first heat exchange portion and a second heat exchange portion that are configured such that refrigerant in the first heat exchange portion flows in parallel with refrigerant in the second heat exchange portion; a flow rate restricting portion configured to cause a flow rate difference between a flow rate of the refrigerant passing through the first heat exchange portion and a flow rate of the refrigerant passing through the second heat exchange portion. An air conditioner includes a controller configured to control a compressor and a flow rate restricting portion. When the controller changes an air conditioning capability of the air conditioner, the controller uses a combination of a frequency of the compressor and the flow rate difference between the refrigerants passing through two heat exchange portions.
    Type: Application
    Filed: January 28, 2019
    Publication date: December 30, 2021
    Inventors: Yusuke TASHIRO, Masanori SATO, Yasuhide HAYAMARU
  • Publication number: 20210180842
    Abstract: An air conditioner (10) includes a refrigerant circuit (13) and refrigerant. The refrigerant circuit (13) has a compressor (1), a condenser (2), a pressure-regulating valve (3), and an evaporator (4). The refrigerant is R32. The pressure-regulating valve (3) includes a flow path (33) causing the refrigerant flowing from the condenser (2) to flow to the evaporator (4), a pressure reference chamber (S2) partitioned from the flow path (33) and filled with inert gas, and a valve portion (34) disposed in the flow path (33). The pressure-regulating valve (3) is configured to adjust a degree of opening of the valve portion (34) to adjust a flow rate of the refrigerant flowing through the flow path (33). The valve portion (34) is configured to increase the degree of opening when a pressure in the flow path (33) is higher than a pressure in the pressure reference chamber (S2), and reduce the degree of opening when the pressure in the flow path (33) is lower than the pressure in the pressure reference chamber (S2).
    Type: Application
    Filed: February 22, 2021
    Publication date: June 17, 2021
    Inventors: Yusuke TASHIRO, Komei NAKAJIMA, Masakazu SATO, Yusuke ADACHI, Yasuhide HAYAMARU
  • Publication number: 20210172659
    Abstract: An air conditioner (10) includes a refrigerant circuit (13) and refrigerant. The refrigerant circuit (13) has a compressor (1), a condenser (2), a pressure-regulating valve (3), and an evaporator (4). The refrigerant is R32. The pressure-regulating valve (3) includes a flow path (33) causing the refrigerant flowing from the condenser (2) to flow to the evaporator (4), a pressure reference chamber (S2) partitioned from the flow path (33) and filled with inert gas, and a valve portion (34) disposed in the flow path (33). The pressure-regulating valve (3) is configured to adjust a degree of opening of the valve portion (34) to adjust a flow rate of the refrigerant flowing through the flow path (33). The valve portion (34) is configured to increase the degree of opening when a pressure in the flow path (33) is higher than a pressure in the pressure reference chamber (S2), and reduce the degree of opening when the pressure in the flow path (33) is lower than the pressure in the pressure reference chamber (S2).
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Yusuke TASHIRO, Komei NAKAJIMA, Masakazu SATO, Yusuke ADACHI, Yasuhide HAYAMARU
  • Patent number: 11009247
    Abstract: An air conditioner includes a switching valve, a flow rate restricting portion and an on-off valve. The switching valve provided in a flow path between a compressor and an outdoor heat exchanger. The outdoor heat exchanger includes a heat exchange portion and a heat exchange portion. During heating operation, the switching valve causes a second connection port, a third connection port and a first connection port to communicate with one another. The flow rate restricting portion and the on-off valve are connected in series between an outlet and an inlet of the compressor during the heating operation, to bypass a part of refrigerant. During defrosting operation of the heat exchange portion, the switching valve is configured such that a fourth connection port and the second connection port communicate with each other, and the third connection port and the first connection port communicate with each other.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: May 18, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru
  • Publication number: 20210095905
    Abstract: The refrigeration cycle apparatus includes a refrigerant circuit, a controller to control the refrigerant circuit, a bypass flow path, and a flow control valve. The bypass flow path communicates between the discharge side of the compressor and the first outdoor heat exchanger or between the discharge side of the compressor and the second outdoor heat exchanger. The flow control valve is provided to the bypass flow path. The refrigerant circuit is configured to be able to perform a heating defrosting simultaneous operation. The heating defrosting simultaneous operation is an operation of supplying part of the refrigerant discharged from the compressor to one of the first outdoor heat exchanger and the second outdoor heat exchanger via the bypass flow path, causing the other of the first outdoor heat exchanger and the second outdoor heat exchanger to serve as an evaporator, and causing the indoor heat exchanger to serve as a condenser.
    Type: Application
    Filed: May 23, 2018
    Publication date: April 1, 2021
    Inventors: Yusuke TASHIRO, Yasuhide HAYAMARU, Masakazu KONDO, Masakazu SATO, Naoki NAKAGAWA, Atsushi KAWASHIMA
  • Publication number: 20210080160
    Abstract: When a controller performs a defrosting operation in which frost on an outdoor heat exchanger is caused to be melted, the controller is configured to perform a first defrosting control in which a switching state of a switching device is set to a first state, after the controller performs the first defrosting control, perform a second defrosting control in which the switching state of the switching device is set to a second state, and after the controller performs the second defrosting control, perform a third defrosting control in which the switching state of the switching device is set to the first state.
    Type: Application
    Filed: January 26, 2018
    Publication date: March 18, 2021
    Inventors: Yusuke TASHIRO, Yasuhide HAYAMARU, Masakazu KONDO, Masakazu SATO, Naoki NAKAGAWA, Atsushi KAWASHIMA
  • Publication number: 20210080161
    Abstract: A refrigeration cycle apparatus includes: a first four-way valve having first to fourth ports; a second four-way valve and a third four-way valve each having fifth to eighth ports; a compressor; a discharge pipe connecting a discharge port of the compressor and the first port; a suction pipe connecting a suction port of the compressor and the second port; a first high pressure pipe connecting the discharge pipe and the fifth ports; a second high pressure pipe connecting the third port and the first high pressure pipe; a first valve provided at the first high pressure pipe; a second valve provided at the second high pressure pipe; a low pressure pipe connecting the suction pipe and the sixth ports; a first outdoor heat exchanger connected with the seventh port of the second four-way valve; a second outdoor heat exchanger connected with the seventh port of the third four-way valve; and an indoor heat exchanger connected with the fourth port.
    Type: Application
    Filed: June 19, 2018
    Publication date: March 18, 2021
    Inventors: Yusuke TASHIRO, Yasuhide HAYAMARU, Masakazu KONDO, Masakazu SATO, Naoki NAKAGAWA, Atsushi KAWASHIMA
  • Patent number: 10731904
    Abstract: An air conditioner includes a compressor, a condenser, an expansion valve, an evaporator, and a temperature detection unit. The temperature detection unit is attached to the condenser and is configured to detect a temperature of the refrigerant in the condenser. The expansion valve is configured to be capable of adjusting a flow rate per unit time of the refrigerant flowing through the expansion valve by adjusting a degree of opening of the expansion valve. The degree of opening of the expansion valve is increased when the temperature of the refrigerant detected by the temperature detection unit rises, and the degree of opening of the expansion valve is decreased when the temperature of the refrigerant detected by the temperature detection unit falls.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: August 4, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Komei Nakajima, Yusuke Tashiro, Yasuhide Hayamaru, Yusuke Adachi
  • Patent number: 10712061
    Abstract: An air conditioning apparatus includes a flow path switching valve. An outdoor heat exchanger is divided into a first heat exchanger and a second heat exchanger. During heating operation, a refrigerant is diverted and supplied to the first heat exchanger and the second heat exchanger. During the heating operation, the flow path switching valve combines the flows of the refrigerants discharged from the first heat exchanger and the second heat exchanger, and returns the resultant refrigerant to a refrigerant inlet of a compressor. Three ports of the flow path switching valve are internally communicated with one another while being isolated from an other single port during the heating operation. Two ports of the flow path switching valve are internally communicated with each other and other two ports are internally communicated with each other during defrosting operation of the first heat exchanger or the second heat exchanger.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 14, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Tashiro, Yasuhide Hayamaru