Patents by Inventor Yasuhiko Ohsawa

Yasuhiko Ohsawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170033350
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: December 12, 2014
    Publication date: February 2, 2017
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20160351877
    Abstract: A non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolyte layer having an electrolyte solution containing a non-aqueous solvent. At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode material for a non-aqueous electrolyte secondary battery having a core part including an electrode active material and a shell part including a conductive material in a base material formed by a gel-forming polymer having a liquid absorption rate with respect to the electrolyte solution of 10 to 200%.
    Type: Application
    Filed: January 26, 2015
    Publication date: December 1, 2016
    Inventors: Yuki Kusachi, Yasuhiko Ohsawa, Hiroshi Akama, Hideaki Horie, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Patent number: 9496065
    Abstract: A positive electrode active material is provided for an electric device that contains a first active material comprising a transition metal oxide represented by formula (1): Li1.5[NiaCobMnc[Li]d]O3 (where a, b, c, and d satisfy the relationships: 0<d<0.5; a+b+c+d=1.5; and 1.0<a+b+c<1.5); and a second active material comprising a spinel transition metal oxide that has a crystal structure assigned to the space group Fd-3m, represented by formula (2): LiMa?Mn2?a?O4 (where M indicates at least one metal element having an atomic valence of 2-4, and a? satisfies the relationship 0=a?<2.0). The fraction content of the first and second active material by mass ratio satisfies the relationship (3): 100:0 A:MB A indicates the mass of the first active material and MB indicates the mass of the second active material).
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 15, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Kenzo Oshihara, Tomohiro Kaburagi, Shinji Yamamoto
  • Patent number: 9466855
    Abstract: An additive for a sodium ion secondary battery of the present invention includes a compound of at least one of a saturated cyclic carbonate having a fluoro group and a chain carbonate having a fluoro group. A sodium ion secondary battery (1) of the present invention includes: a non-aqueous electrolytic solution including the additive for a sodium ion secondary battery and a non-aqueous solvent containing a saturated cyclic carbonate or a non-aqueous solvent containing a saturated cyclic carbonate and a chain carbonate; a positive electrode (11); and a negative electrode (12) that includes a coating formed in a surface of the negative electrode, the coating containing a composite material having carbon, oxygen, fluorine and sodium in the surface and includes a negative-electrode active material containing a hard carbon.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: October 11, 2016
    Assignees: NISSAN MOTOR CO., LTD., TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Shinichi Komaba
  • Patent number: 9461299
    Abstract: A transition metal oxide containing solid solution lithium contains a transition metal oxide containing lithium, which is represented by a chemical formula: Li1.5[NiaCobMnc[Li]d]O3 where 0<a<1.4; 0?b<1.4; 0<c<1.4; 0.1<d?0.4; a+b+c+d=1.5; and 1.1?a+b+c<1.4. The transition metal oxide containing lithium includes: a layered structure region; and a region changed to a spinel structure by being subjected to charge or charge/discharge in a predetermined potential range. When a ratio of an entire change from Li2MnO3 with a layered structure in a region to be changed to the spinel structure to LiMn2O4 with the spinel structure is defined to be 1, a spinel structure change ratio of the transition metal oxide containing lithium is 0.25 or more to less than 1.0.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: October 4, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Tomohiro Kaburagi, Shinji Yamamoto, Kenzo Oshihara
  • Publication number: 20160260966
    Abstract: A core-shell-type electrode material is used as an electrode active material layer of a non-aqueous electrolyte secondary battery, the core-shell-type electrode material having a core part in which at least a part of a surface of an electrode active material is coated with a first conductive material and a shell part in which a second conductive material is contained in a base material formed by a gel-forming polymer having a tensile elongation at break of 10% or more in a gel state.
    Type: Application
    Filed: October 3, 2014
    Publication date: September 8, 2016
    Inventors: Yasuhiko Ohsawa, Hideaki Horie, Hiroshi Akama, Yuki Kusachi, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20160248086
    Abstract: A core-shell-type electrode material is used as an electrode active material layer of a non-aqueous electrolyte secondary battery, the core-shell-type electrode material having a core part including an electrode active material and a shell part in which a conductive material is contained in a base material formed by a gel-forming polymer having a tensile elongation at break of 10% or more in a gel state.
    Type: Application
    Filed: October 3, 2014
    Publication date: August 25, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hideaki Horie, Hiroshi Akama, Yuki Kusachi, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20160149216
    Abstract: An object of the present invention is to provide a resin for coating an active material for lithium ion batteries which can prevent expansion of the electrode without inhibiting conduction of lithium ions. The resin for coating an active material for lithium ion batteries according to the present invention has a liquid absorbing rate of 10% or more when the resin is immersed in an electrolyte solution, and a tensile elongation at break of 10% or more when the resin is saturated with the electrolyte solution.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 26, 2016
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuta MURAKAMI, Yuki KUSACHI, Yasuhiko OHSAWA, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20150372547
    Abstract: Each of permanent magnets includes a magnet body formed across the radial direction of a rotor core, and a pair of magnet end parts bending toward the outer peripheral side of the magnet body and extending respectively from both ends of the magnet body in the peripheral direction toward the outer edge of the rotor core. Magnetization directions of the magnet end parts and a magnetic pole center line intersect with each other on the outer peripheral side of the magnet body. The inclination angle of each magnetization direction of the magnet end parts with respect to the magnetic pole center line is greater than the inclination angle of a magnetization direction of the magnet body with respect to the magnetic pole center line.
    Type: Application
    Filed: September 30, 2013
    Publication date: December 24, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Nobuyuki KIFUJI, Yoshiki YASUDA, Yoshinari ASANO, Yasuhiko OHSAWA
  • Publication number: 20150034863
    Abstract: A positive-electrode active material is formed of a solid solution type complex oxide represented by a compositional formula of [Li1.5][Li{0.5{1?x}?ny}(n?1)yM?nyMn1?xM1.5x]O3, wherein 0.1±x±0.5 is satisfied, M is represented by Ni?Co?Mn?, where 0<??0.5, 0???0.33, and 0<??0.5, M? is at least one element selected from the group consisting of Mg, Zn, Al, Fe, Ti and V, valence n is from 2 to 5, and 0<ny<0.5 is satisfied. “ ” represents a hole.
    Type: Application
    Filed: February 15, 2013
    Publication date: February 5, 2015
    Inventors: Atsushi Ito, Yasuhiko Ohsawa
  • Patent number: 8916295
    Abstract: The positive electrode active material includes a compound represented by the following composition formula: [Li1.5][Li0.5(1-x)Mn1-xM1.5x]O3 (wherein x satisfies 0.1?x?0.5, and M is represented by Ni?Co?Mn? in which ?, ? and ? satisfy 0<??0.5, 0???0.33 and 0<??0.5, respectively), wherein a half width of the peak of a (001) crystal plane of the compound measured by X-ray diffraction is in a range from 0.14 to 0.33 inclusive, and an average primary particle diameter of the compound is in a range from 0.03 ?m to 0.4 ?m inclusive.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 23, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Kenzo Oshihara, Yasuhiko Ohsawa
  • Publication number: 20140356718
    Abstract: A transition metal oxide containing solid solution lithium contains a transition metal oxide containing lithium, which is represented by a chemical formula: Li1.5[NiaCobMnc[Li]d]O3 where 0<a<1.4; 0?b<1.4; 0<c<1.4; 0.1<d?0.4; a+b+c+d=1.5; and 1.1?a+b+c<1.4. The transition metal oxide containing lithium includes: a layered structure region; and a region changed to a spinel structure by being subjected to charge or charge/discharge in a predetermined potential range. When a ratio of an entire change from Li2MnO3 with a layered structure in a region to be changed to the spinel structure to LiMn2O4 with the spinel structure is defined to be 1, a spinel structure change ratio of the transition metal oxide containing lithium is 0.25 or more to less than 1.0.
    Type: Application
    Filed: February 1, 2013
    Publication date: December 4, 2014
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Tomohiro Kaburagi, Shinji Yamamoto, Kenzo Oshihara
  • Publication number: 20140320141
    Abstract: A control device of a secondary battery uses, as material of a positive electrode, positive electrode active material that shows a difference of an open circuit voltage curve between charging and discharging. A storing unit stores, as discharge open circuit voltage information, a relationship between an SOC in a discharge process and an open circuit voltage for each changeover SOC that is an SOC when changing a state of the secondary battery from the charge to the discharge. An SOC calculating unit calculates the SOC of the secondary battery in the discharge process on the basis of a changeover SOC when actually performing the change from the charge to the discharge and the discharge open circuit voltage information stored in the storing unit.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 30, 2014
    Inventors: Tomohiro Kaburagi, Yasuhiko Ohsawa, Atsushi Itou, Takuya Kinoshita
  • Patent number: 8778539
    Abstract: A secondary battery electrode, which is formed by stacking an electrode active material layer (I) containing spinel-structured lithium manganate as an electrode active material and an electrode active material layer (II) containing, as an electrode active material, a composite oxide represented by the following Chemical formula (1) in a thickness direction of the electrode, in which the electrode active material layer (I) is disposed in contact with a current collector, and an average particle diameter of the composite oxide is smaller than an average particle diameter of the spinel-structured lithium manganate. In such a way, it is possible to provide a secondary battery electrode capable of realizing a secondary battery excellent in both of a volumetric energy density and a volumetric output density.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 15, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasuhiko Ohsawa, Mieko Kawai
  • Publication number: 20140131633
    Abstract: A positive electrode active material is provided for an electric device that contains a first active material comprising a transition metal oxide represented by formula (1): Li1.5[NiaCobMnc[Li]d]O3 (where a, b, c, and d satisfy the relationships: 0<d<0.5; a+b+c+d=1.5; and 1.0<a+b+c<1.5); and a second active material comprising a spinel transition metal oxide that has a crystal structure assigned to the space group Fd-3m, represented by formula (2): LiMa?Mn2?a?O4 (where M indicates at least one metal element having an atomic valence of 2-4, and a? satisfies the relationship 0=a?<2.0). The fraction content of the first and second active material by mass ratio satisfies the relationship (3): 100:0 A:MB A indicates the mass of the first active material and MB indicates the mass of the second active material).
    Type: Application
    Filed: July 3, 2012
    Publication date: May 15, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Kenzo Oshihara, Tomohiro Kaburagi, Shinji Yamamoto
  • Publication number: 20140017574
    Abstract: An additive for a sodium ion secondary battery of the present invention includes a compound of at least one of a saturated cyclic carbonate having a fluoro group and a chain carbonate having a fluoro group. A sodium ion secondary battery (1) of the present invention includes: a non-aqueous electrolytic solution including the additive for a sodium ion secondary battery and a non-aqueous solvent containing a saturated cyclic carbonate or a non-aqueous solvent containing a saturated cyclic carbonate and a chain carbonate; a positive electrode (11); and a negative electrode (12) that includes a coating formed in a surface of the negative electrode, the coating containing a composite material having carbon, oxygen, fluorine and sodium in the surface and includes a negative-electrode active material containing a hard carbon.
    Type: Application
    Filed: March 8, 2012
    Publication date: January 16, 2014
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Shinichi Komaba, Naoaki Yabuuchi, Wataru Murata, Toru Ishikawa, Yuta Matsuura
  • Publication number: 20130337332
    Abstract: The positive electrode active material includes a compound represented by the following composition formula: [Li1.5][Li0.5(1-x)Mn1-xM1.5x]O3 (wherein x satisfies 0.1?x?0.5, and M is represented by Ni?Co?Mn? in which ?, ? and ? satisfy 0<??0.5, 0???0.33 and 0<??0.5, respectively), wherein a half width of the peak of a (001) crystal plane of the compound measured by X-ray diffraction is in a range from 0.14 to 0.33 inclusive, and an average primary particle diameter of the compound is in a range from 0.03 ?m to 0.4 ?m inclusive.
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Inventors: Atsushi Ito, Kenzo Oshihara, Yasuhiko Ohsawa
  • Patent number: 8603369
    Abstract: [Problems to be Solved] Provided is a positive electrode material for an electrical device, which has high capacity and improved initial charge-discharge efficiency. [Means for Solving the Problem] Disclosed is a positive electrode material for an electrical device, which is represented by the formula (1): aLi[Li1/3Mn2/3]O2.(1?a)Li[NixCoyMn1-x-y]O2??(1) (wherein, 0<a<1, 0<x<0.5, and 0<y<0.3) and satisfies the relational expression: 2x+y<1.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 10, 2013
    Assignees: Nissan Motor Co., Ltd., Kanagawa University
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Yuichi Sato
  • Publication number: 20120228544
    Abstract: [Problems to be Solved] Provided is a positive electrode material for an electrical device, which has high capacity and improved initial charge-discharge efficiency. [Means for Solving the Problem] Disclosed is a positive electrode material for an electrical device, which is represented by the formula (1): aLi[Li1/3Mn2/3]O2.(1?a)Li[NixCoyMn1-x-y]O2??(1) (wherein, 0<a<1, 0<x<0.5, and 0<y<0.3) and satisfies the relational expression: 2x+y<1.
    Type: Application
    Filed: December 2, 2010
    Publication date: September 13, 2012
    Inventors: Atsushi Ito, Yasuhiko Ohsawa, Yuichi Sato
  • Patent number: 7867650
    Abstract: A laminate type battery comprises a substrate, a power generating element which has at least one single cell made by a positive electrode layer, an electrolyte layer and a negative electrode layer which are sandwiched by collecting layers from both sides thereof, and an electric circuit portion having electrode terminals which connect the collecting layers to an external device and circuitries which connect the collecting layers and the electrode terminals. In the battery, the power generating element and the electric circuit portion are formed by stacking a plurality of layers on the substrate, and each of the layers is configured such that the power generating element and the electric circuit portion are formed by stacking the layers.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: January 11, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasunari Hisamitsu, Hideaki Horie, Kouichi Nemoto, Yasuhiko Ohsawa