Patents by Inventor Yasuhiro Fujiwara

Yasuhiro Fujiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120142516
    Abstract: The disclosed is an optical glass having ultrahigh refractive index and high dispersion characteristics in the form of a refractive index nd exceeding 2.05 and an Abbe number vd of 18.5 or lower and of permitting the stable production of high-quality glass from a glass melt; and a glass material for press molding and an optical element comprised of the optical glass. The optical glass is in the form of an oxide glass and comprises, denoted as cationic percentages, 16 to 35% of P5+, 14 to 35% of Bi3+, 10 to 33% of Nb5+, 0 to 18% of Ti4+, and 0 to 20% of W6+; the total content of Bi3+, Nb5+, Ti4+, and W6+ being 55% or higher; the refractive index nd exceeding 2.05; and the Abbe number vd being 18.5 or lower.
    Type: Application
    Filed: September 29, 2011
    Publication date: June 7, 2012
    Applicant: HOYA CORPORATION
    Inventor: Yasuhiro FUJIWARA
  • Publication number: 20120035044
    Abstract: An optical glass having a refractive index nd of 1.70 or greater and an Abbé number of 50 or greater. Given as mole percentages, it comprises: B2O3 (20 to 80 percent), SiO2 (0 to 30 percent), Li2O (1 to 25 percent), ZnO (0 to 20 percent), La2O3 (4 to 30 percent), Gd2O3 (1 to 25 percent), Y2O3 (0 to 20 percent), ZrO2 (0 to 5 percent), MgO (0 to 25 percent), CaO (0 to 15 percent), and SrO (0 to 10 percent), with the combined quantity of the above components being 97 percent or greater. The molar ratio of {ZnO/(La2O3+Gd2O3+Y2O3)} is 0.8 or less and the molar ratio of {(CaO+SrO+BaO)/(La2O3+Gd2O3+Y2O3)} is 0.8 or less. Ta2O5 may be incorporated as an optional component, with the molar ratio {(ZrO2+Ta2O5)/(La2O3+Gd2O3+Y2O3)} being 0.4 or less.
    Type: Application
    Filed: September 13, 2011
    Publication date: February 9, 2012
    Applicant: HOYA CORPORATION
    Inventor: Yasuhiro Fujiwara
  • Publication number: 20110289970
    Abstract: Preforms for precision press molding made of optical glass, optical elements, and methods of manufacturing the same are provided. The preforms are suited to precision press molding having a broad range of dispersion characteristics, a low glass transition temperature, a low sag point, and good resistance to devitrification while containing no PbO. The optical element is obtained by precision press molding the preform. One example of the preform has a refractive index (nd) of greater than or equal to 1.7 and an Abbé number (?d) of less than or equal to 32. The other example of the preform has an Abbé number (?d) exceeding 32.
    Type: Application
    Filed: June 28, 2011
    Publication date: December 1, 2011
    Applicant: HOYA CORPORATION
    Inventors: Xuelu Zou, Yoshiko Kasuga, Yasuhiro Fujiwara
  • Publication number: 20110263410
    Abstract: A process for producing a glass in the production of a glass molded article formed of an optical glass by melting and clarifying a glass raw material to prepare a molten glass and molding said molten glass, the process comprising preparing a glass raw material that gives an oxide glass comprising, by cationic %, 12 to 65% of B3+, 0 to 20% of Si4+, 0 to 6% of Ge4+, 15 to 50% of total of La3+, Gd3+, Y3+, Yb3+, Sc3+ and Lu3+, 4 to 54% of total of Ta5+, Zr4+, Ti4+, Nb5+, W6+ and Bi3+, 0 to 35% of Zn2+, 0 to 9% of total of Li+, Na+ and K+, and 0 to 15% of total of Mg2+, Ca2+, Sr2+ and Ba2+, a total content of said cationic components in the oxide glass being 99 to 100%, and said glass raw material comprising carbonate and sulfate.
    Type: Application
    Filed: November 9, 2009
    Publication date: October 27, 2011
    Inventors: Tomoaki Negishi, Yasuhiro Fujiwara
  • Patent number: 8039408
    Abstract: The optical glass of the present invention has a refractive index nd of 1.70 or greater and an Abbé number of 50 or greater. Given as mole percentages, it comprises: B2O3 20 to 80 percent, SiO2 0 to 30 percent, Li2O 1 to 25 percent; ZnO 0 to 20 percent, La2O3 4 to 30 percent, Gd2O3 1 to 25 percent, Y2O3 0 to 20 percent, ZrO2 0 to 5 percent, MgO 0 to 25 percent, CaO 0 to 15 percent, SrO 0 to 10 percent, with the combined quantity of the above components being 97 percent or greater. The molar ratio of {ZnO/(La2O3+Gd2O3+Y2O3)} is 0.8 or less and the molar ratio of {(CaO +SrO+BaO)/(La2O3+Gd2O3+Y2O3)} is 0.8 or less. Ta2O5 may be incorporated as an optional component, with the molar ratio {(ZrO2+Ta2O5)/(La2O3+Gd2O3+Y2O3)}being 0.4 or less. The present invention further relates to a preform for precision press molding comprised of this glass, an optical element comprised of this glass, and methods of manufacturing the same.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 18, 2011
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Fujiwara
  • Publication number: 20110246034
    Abstract: A device with a stepped automatic transmission to transfer power from a power source to an axle using changeable shift speeds includes an input-side fluid transmission element connected to the power source, an output-side fluid transmission element connected to the transmission input shaft, a lock-up clutch engaging and disengaging the input-side and the output-side fluid transmission elements; a unit adjusting the lock-up clutch; a unit setting, when a downshift is to be performed in response to a predetermined request for a large drive force, a predetermined target slip speed value larger than a non-shifting-time value before a rotational speed of the power source exceeds a input shaft rotational speed after the downshift, and setting the target slip speed to decrease toward the non-shifting-time value along with lapse of time after the power source rotational speed source exceeds the post-shifting input shaft speed; and a unit controlling the engagement force so the slip speed becomes the set target slip s
    Type: Application
    Filed: December 20, 2010
    Publication date: October 6, 2011
    Applicant: AISIN AW CO., LTD.
    Inventors: Yasuhiro FUJIWARA, Hiromasa Takai, Masatake Ichikawa, Yutaka Teraoka, Hiroshi Tsutsui
  • Patent number: 8012896
    Abstract: The present invention relates to an optical glass having optical constants in the form of a refractive index nd of 1.70 or higher and an Abbé number nud of 50 or higher, a preform for precision press molding comprised of this glass, an optical element comprised of this glass, and methods for manufacturing the preform and the optical element.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 6, 2011
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Fujiwara
  • Patent number: 7994082
    Abstract: Preforms for precision press molding made of optical glass, optical elements, and methods of manufacturing the same are provided. The preforms are suited to precision press molding having a broad range of dispersion characteristics, a low glass transition temperature, a low sag point, and good resistance to devitrification while containing no PbO. The optical element is obtained by precision press molding the preform. One example of the preform has a refractive index (nd) of greater than or equal to 1.7 and an Abbé number (vd) of less than or equal to 32. The other example of the preform has an Abbé number (vd) exceeding 32.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 9, 2011
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yoshiko Kasuga, Yasuhiro Fujiwara
  • Publication number: 20110143907
    Abstract: The present invention relates to an optical glass with a high refractive index and good precision press moldability, and a preform for precision press molding and an optical element that are comprised of the optical glass. The present invention further relates to a method of manufacturing an optical element, a lens unit being equipped with an optical element and an image pickup device being equipped with a lens unit.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 16, 2011
    Applicant: HOYA CORPORATION
    Inventors: Yasuhiro Fujiwara, Shuhei Mikami, Hiroki Takazawa
  • Patent number: 7955998
    Abstract: A high-refractivity optical glass which has both a low-temperature softening property suitable for precision press-molding and glass stability suitable for hot-shaping of a preform, which contains, by mass %, 13 to 30% of B2O3, 0.1 to 4% of Li2O, 17 to 35% of ZnO, 15 to 45% of La2O3, 4 to 15% of Ta2O5 exclusive of 15%, 0 to 10% of ZrO2, 0 to 10% of Nb2O5 provided that Ta2O5/(Ta2O5+ZrO2+Nb2O5)>0.3, 0 to 20% of WO3 and 0 to 1% of Sb2O3 and which has a refractive index (nd) of 1.80 to 1.84 and an Abbe's number (?d) of 40.0 to 45.0.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: June 7, 2011
    Assignee: Hoya Corporation
    Inventors: Kazutaka Hayashi, Yasuhiro Fujiwara
  • Patent number: 7952686
    Abstract: A stage apparatus that includes a stage and moves the stage in at least a first direction. The stage apparatus also includes a plurality of holding units fixed on the stage to extend in the first direction, in which the first direction is a longitudinal direction. Each of the holding units includes a first portion. A second portion is arranged between the first portion and the stage and a third portion is arranged between the second portion and the stage. The first portion includes a holding surface to hold an object. A length of the second portion in the first direction is less than a length of the first portion in the first direction, and the length of the second portion in the first direction is less than a length of the third portion in the first direction.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: May 31, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuhiro Fujiwara
  • Patent number: 7947617
    Abstract: To provide a high-refractivity high-dispersion optical glass having excellent stability An optical glass which is formed of an oxide glass containing 30 to 70 cationic % of Bi3+ and has a liquidus temperature of 800° C. or lower.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 24, 2011
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Yoshio Nojima
  • Publication number: 20110113607
    Abstract: A pompon making tool includes a first member and a second member to be superposed on each other. The first member includes a pair of arms movable relative to each other, and each arm includes an arcuate portion. Likewise, the second member includes a pair of arms movable relative to each other, and each arm includes an arcuate portion. The arcuate portions of the first and the second member each include a base plate portion, and a pair of thread support portions spaced apart from each other in the width direction of the base plate portion. The thread support portions each include a top portion on the outer side of the base plate portion and extend in the longitudinal direction of the arcuate portion.
    Type: Application
    Filed: August 23, 2010
    Publication date: May 19, 2011
    Applicant: CLOVER MFG. CO., LTD.
    Inventor: Yasuhiro FUJIWARA
  • Publication number: 20110105294
    Abstract: [Problems to be Solved] To provide a high-refractivity low-dispersion optical glass that enables the stable production of high-quality optical elements. [Means to Solve the Problems] An optical glass comprising, as essential components, 20 to 50% of B3+, 5 to 35% of La3+, 1 to 30% of Nb5+, 0.5 to 15% of Ta5+, and 11 to 40% of Zn2+, the total content of B3+ and Si4+ being 20 to 50%, the total content of La3+, Gd3+ and Y3+ being 5 to 35%, the cationic ratio of ((B3++Si4+)/(La3++Gd3++Y3+)) being from 1 to 5, the total content of Ti4+, Nb5+, Ta5+ and W6+ being 10 to 35%, the cationic ratio of ((Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)) being from 0.7 to 1, the cationic ratio of ((B3++Si4+)/(Ti4++Nb5++Ta5++W6+)) being from 0.5 to 4, the cationic ratio of ((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)) being from 0.2 to 3, the cationic ratio of Zn2+/Zn2++Mg2++Ca2++Sr2++Ba2+) being from 0.8 to 1, the optical glass having a refractive index nd of 1.89 or more and an Abbe's number ?d of 27 to 37.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 5, 2011
    Applicant: HOYA CORPORATION
    Inventors: Tomoaki NEGISHI, Yasuhiro Fujiwara
  • Patent number: 7930901
    Abstract: Provided are optical glasses having a phosphate-containing composition that can materialize highly useful optical properties including high-refractivity and high-dispersion properties; an optical glass comprising P2O5, SiO2 and Li2O as essential components, comprising Na2O and K2O as optional components, having an Li2O/(Li2O+Na2O+K2O) molar ratio of from ? to 1 and having an Abbe's number (?d) of 30 or less, and an optical glass comprising P2O5, SiO2 and Li2O as essential components, having the property of transmittance that when light is caused to vertically enter one of two plane and mutually parallel optically polished surfaces of a sample of the glass having a thickness of 10.0±0.1 mm and caused to exit from the other surface, the wavelength at which the transmittance represented by the ratio of transmitted light intensity to incidence light intensity (transmitted light intensity/incidence light intensity) comes to be 70% is 510 nm or less, having a refractive index (nd) of 1.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 26, 2011
    Assignee: Hoya Corporation
    Inventors: Yasuhiro Fujiwara, Xuelu Zou
  • Patent number: 7855158
    Abstract: Provided is an optical glass comprising, denoted as molar percentages: 10 to 20 percent SiO2, 5 to 40 percent B2O3, SiO2+B2O3=15 to 50 percent, 0 to 10 percent Li2O, 12 to 36 percent ZnO, where 3×Li2O+ZnO?18 percent, 5 to 30 percent La2O3, 0 to 20 percent Gd2O3, 0 to 10 percent Y2O3, La2O3+Gd2O3=10 to 30 percent, La2O3/SIGMA(?)RE2O3=0.67 to 0.95 (where SIGMA(?)RE2O3=La2O3+Gd2O3+Y2O3+Yb2O3+Sc2O3+Lu2O3), 0.5 to 10 percent ZrO2, 1 to 15 percent Ta2O5, 1 to 20 percent WO3, Ta2O5/WO3?2.5 (molar ratio), 0 to 8 percent Nb2O5, 0 to 8 percent TiO2; and having a refractive index nd of not less than 1.87 and an Abbé number nu(v)d of not less than 35 but less then 40. A method for manufacturing a preform for precision press molding by separating a glass melt gob from a glass melt obtained by mixing, heating, and melting glass starting materials, and forming a preform in a glass melt gob cooling step, said mixing, heating, and melting of glass starting materials is conducted so as to obtain the above optical glass.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: December 21, 2010
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Fujiwara
  • Patent number: 7845216
    Abstract: A gaseous fuel injector 3 supplies gaseous fuel from a compressed gas cylinder 1 into a measuring portion thin tube 5 and pressure change in the tube is measured by a pressure measuring device 4 through a small hole provided in the thin tube 5. An extension thin tube 6 for removing the influence of reflected waves is provided on the downstream side of the measuring portion thin tube 5. There is provided at the downstream side end of the extension thin tube a back pressure valve 13 for uniformly increasing the pressure in the tube and for bringing the pressure close to the actual environment in the engine cylinder. Also, a tapered-shape nozzle is arranged in the measuring portion thin tube 5. Pressure measured by the pressure measuring device 4 is transduced into mass flow rate in the thin tube according to a predetermined calculation formula. Accordingly, it is possible to measure instantaneous mass flow rate of gaseous fuel injected from the gaseous fuel injector.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: December 7, 2010
    Assignee: National University Corporation Gunma University
    Inventors: Mikiya Araki, Seiichi Shiga, Tsuneaki Ishima, Tomio Obokata, Yasuhiro Fujiwara, Hisao Nakamura
  • Publication number: 20100292066
    Abstract: A glass material for mold pressing, comprised of a core portion comprised of a multicomponent optical glass containing at least one readily reducible component selected from among W, Ti, Bi, and Nb, and a covering portion covering the surface of said core portion, comprised of a multicomponent glass containing none or a lower quantity of said readily reducible component than is contained in said core portion. A glass material for mold pressing comprising a core portion comprised of a fluorine-containing multicomponent optical glass and a covering portion covering the surface of said core portion, comprised of a multicomponent glass containing none or a lower quantity of fluorine than is contained in said core portion. A method for manufacturing an optical glass element comprising heat softening a glass material that has been preformed into a prescribed shape, and conducting press molding with a pressing mold, employing the above glass material of the invention.
    Type: Application
    Filed: March 28, 2007
    Publication date: November 18, 2010
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Hiroshi Kohno, Kohichiro Shiraishi
  • Publication number: 20100255979
    Abstract: An optical Glass characterized by comprising, denoted as molar percentages: B2O3 5 to 45 percent; Li2O 0 to 3 percent; ZnO 10 to 40 percent; La2O3 5 to 30 percent; Gd2O3 0 to 20 percent; and at least one from among TiO2, Nb2O5, WO3, and Bi2O3; in that the total content X of Ti, Nb, W, and Bi, denoted as a cation percentage, is 3 to 35 percent; in that the Abbé number v(nu)d and refractive index nd fall within the range delimited by sequentially connecting with straight lines points A, B, C, D and A in FIG. 1; and in that the glass transition temperature Tg satisfies relation (1) below: Tg[° C.]?655° C.?5×X??(1). An optical Glass characterized by comprising, denoted as molar percentages: B2O5 5 to 45 percent; SiO2 0 to 6 percent (excluding 6 percent); Li2O, Na2O, K2O in total 0 to 3 percent; ZnO 10 to 40 percent; La2O3 5 to 30 percent; Gd2O3 0 to 20 percent; and ZrO2, TaO2, TiO2, Nb2O5, 12.
    Type: Application
    Filed: May 28, 2009
    Publication date: October 7, 2010
    Applicant: Hoya Corporation
    Inventor: Yasuhiro Fujiwara
  • Patent number: D650575
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Clover Mfg. Co., Ltd.
    Inventor: Yasuhiro Fujiwara