Patents by Inventor Yasuhiro Tsudo

Yasuhiro Tsudo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11811023
    Abstract: Provided is a lithium-ion assembled battery in which two or more single cells are laminated and the DC resistance value between the single cells is low.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: November 7, 2023
    Assignee: APB Corporation
    Inventors: Hideaki Horie, Shun Kudoh, Ryosuke Kusano, Yasuhiro Tsudo
  • Publication number: 20230053222
    Abstract: Provided is a lithium-ion assembled battery in which two or more single cells are laminated and the DC resistance value between the single cells is low.
    Type: Application
    Filed: November 18, 2020
    Publication date: February 16, 2023
    Inventors: Hideaki Horie, Shun Kudoh, Ryosuke Kusano, Yasuhiro Tsudo
  • Publication number: 20230033163
    Abstract: Coated positive electrode active material particles for a lithium-ion battery includes positive electrode active material particles; and a coating layer that contains a polymer coating compound and a conductive additive and at least partially covers a surface of the positive electrode active material particles, wherein a coverage of the positive electrode active material particles with the coating layer as determined by X-ray photoelectron spectroscopy is 65% to 96%.
    Type: Application
    Filed: December 17, 2020
    Publication date: February 2, 2023
    Applicant: APB CORPORATION
    Inventors: Shogo ISOMURA, Yasuhiro TSUDO, Yuya SHIMOMOTO, Kenichi KAWAKITA, Kazuya MINAMI, Shun KUDO, Yuichiro YOKOYAMA, Takahiro IMAISHI, Hideaki HORIE
  • Patent number: 11380901
    Abstract: A resin current collector provides means for improving the cycle characteristics in a lithium ion battery and includes a polyolefin resin, and a conductive carbon filler. The total surface area of the conductive carbon filler contained in 1 g of the resin current collector is 7.0 m2 or more and 10.5 m2 or less.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: July 5, 2022
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Ryosuke Kusano, Yoshihiro Ikeda, Yasuhiro Tsudo, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 11355758
    Abstract: A current collector for a lithium ion battery includes a first conductive resin layer and a second conductive resin layer. The first conductive resin layer includes a first conductive filler. The second conductive resin layer is formed on the first conductive resin layer and includes a second conductive filler. The first conductive filler is a conductive carbon. The second conductive filler contains at least one kind of metal element selected from the group consisting of platinum, gold, silver, copper, nickel, and titanium. A volume % of the second conductive filler in the second conductive resin layer on a first surface side, which is a first conductive resin layer side, is higher than that on the second surface side that is opposite to the first conductive resin layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: June 7, 2022
    Assignees: GUNZE LIMITED, APB Corporation
    Inventors: Kazuaki Onishi, Masahiro Uchimaru, Ryosuke Kusano, Sonomi Fukuyama, Shun Kudoh, Yasuhiro Tsudo, Hideaki Horie
  • Patent number: 11322732
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 3, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20220045334
    Abstract: A resin current collector is a current collector for a positive electrode of a lithium ion battery. This resin current collector includes a polyolefin resin and a conductive carbon filler. With this resin current collector, a value obtained by dividing the yield point strength in the TD (Traverse Direction) by the yield point strength in the MD (Machine Direction) is at least 0.75 and at most 1.10, and the ten-point average roughness Rz in the TD is less than 4 ?m.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 10, 2022
    Inventors: Takehiro ISO, Kazuaki ONISHI, Hiroyuki NONAKA, Yasuji MARUYAMA,, Ryosuke KUSANO, Sonomi FUKUYAMA, Shun KUDOH, Yasuhiro TSUDO, Hideaki HORIE
  • Publication number: 20220045333
    Abstract: A current collector for a lithium ion battery includes a first conductive resin layer and a second conductive resin layer. The first conductive resin layer includes a first conductive filler. The second conductive resin layer is formed on the first conductive resin layer and includes a second conductive filler. The first conductive filler is a conductive carbon. The second conductive filler contains at least one kind of metal element selected from the group consisting of platinum, gold, silver, copper, nickel, and titanium. A volume % of the second conductive filler in the second conductive resin layer on a first surface side, which is a first conductive resin layer side, is higher than that on the second surface side that is opposite to the first conductive resin layer.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 10, 2022
    Inventors: Kazuaki ONISHI, Masahiro UCHIMARU, Ryosuke KUSANO, Sonomi FUKUYAMA, Shun KUDOH, Yasuhiro TSUDO, Hideaki HORIE
  • Patent number: 11233229
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 25, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20210408525
    Abstract: The present invention aims to provide a method for producing a pinhole-free thin resin current collector for negative electrodes. The method for producing a sheet-shaped resin current collector for negative electrodes of the present invention includes stacking three or more layers of melts of conductive resin compositions each containing a polyolefin and a conductive filler to obtain a multilayered body, wherein the polyolefin contained in each of the conductive resin compositions that form the respective layers of the multilayered body has a melt mass flow rate of 15 to 70 g/10 min as measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
    Type: Application
    Filed: October 21, 2019
    Publication date: December 30, 2021
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., GUNZE LIMITED
    Inventors: Ryosuke KUSANO, Yasuhiro TSUDO, Yasuji MARUYAMA, Kazuaki ONISHI, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20210257625
    Abstract: A resin current collector exhibits liquid bleeding prevention properties and low resistance, suppresses the generation of an oxidation current, and exhibits moldability that enables film thinning. The resin current collector contains a polyolefin resin and two kinds of conductive carbon fillers, a first conductive carbon filler and a second conductive carbon filler, in which the first conductive carbon filler is graphite or carbon black, the second conductive carbon filler is a carbon nanotube or a carbon nanofiber having a specific surface area of 35 to 300 m2/g, a total surface area of the first conductive carbon filler contained in 1 g of the resin current collector is 0.5 to 9.0 m2, and a mass proportion of the first conductive carbon filler is 30% by mass or less with respect to a mass of the resin current collector.
    Type: Application
    Filed: May 30, 2019
    Publication date: August 19, 2021
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Yoshihiro Ikeda, Ryosuke Kusano, Yasuhiro Tsudo, Yasuhiko Osawa, Yuki Kusachi, Hajime Sato, Hiroshi Akama, Hideaki Horie
  • Patent number: 11063295
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: July 13, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Yuki Kusachi, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Kenichi Kawakita, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10964934
    Abstract: A laminate type battery includes a power generating element and an outer casing body. The power generating element is formed by electrically laminating in series a plurality of single battery layers in which a single battery layer is formed by sequentially laminating a positive electrode current collector, a positive electrode active material layer, an electrolyte layer, a negative electrode active material layer, and a negative electrode current collector. The power generating element is disposed inside the outer casing body. At least one of the positive electrode current collector or the negative electrode current collector includes a resin layer having conductivity. The single battery layer including the resin layer is electrically connected to an adjacent single battery layer via at least one resistance reduction layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: March 30, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Publication number: 20200358077
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: June 12, 2020
    Publication date: November 12, 2020
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200358078
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: June 12, 2020
    Publication date: November 12, 2020
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200243867
    Abstract: A resin current collector provides means for improving the cycle characteristics in a lithium ion battery and includes a polyolefin resin, and a conductive carbon filler. The total surface area of the conductive carbon filler contained in 1 g of the resin current collector is 7.0 m2 or more and 10.5 m2 or less.
    Type: Application
    Filed: October 15, 2018
    Publication date: July 30, 2020
    Inventors: Ryosuke Kusano, Yoshihiro Ikeda, Yasuhiro Tsudo, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10727476
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 28, 2020
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10658674
    Abstract: An electrode for improving the durability of a battery includes a current collector and an active material layer. The current collector has a conductive resin layer including a polymer material and a conductive filler. The electrode further includes a conductive member, which is in electrical contact with the conductive filler, between the current collector and the active material layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 19, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10511004
    Abstract: A non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolyte layer having an electrolyte solution containing a non-aqueous solvent. At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode material for a non-aqueous electrolyte secondary battery having a core part including an electrode active material and a shell part including a conductive material in a base material formed by a gel-forming polymer having a liquid absorption rate with respect to the electrolyte solution of 10 to 200%.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: December 17, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuki Kusachi, Yasuhiko Ohsawa, Hiroshi Akama, Hideaki Horie, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20190348712
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiro Shindo, Yasuhiro TSUDO