Patents by Inventor Yasuhito Kondo

Yasuhito Kondo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12049685
    Abstract: The manufacturing method of a porous silicon material of the present disclosure includes a particle forming step of melting a raw material containing Al as a first element in an amount of 50% by mass or more and Si in an amount of 50% by mass or less to obtain a silicon alloy, a pore forming step of removing the first element from the silicon alloy to obtain a porous material, and a heat treatment step of heating the porous material to diffuse elements other than Si to a surface of the porous material.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: July 30, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Kawaura, Yasuhito Kondo, Ryo Suzuki, Hiroshi Nozaki, Jun Yoshida, Tetsuya Waseda, Mitsutoshi Otaki
  • Publication number: 20240043966
    Abstract: The manufacturing method of a porous silicon material of the present disclosure includes a particle forming step of melting a raw material containing Al as a first element in an amount of 50% by mass or more and Si in an amount of 50% by mass or less to obtain a silicon alloy, a pore forming step of removing the first element from the silicon alloy to obtain a porous material, and a heat treatment step of heating the porous material to diffuse elements other than Si to a surface of the porous material.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki KAWAURA, Yasuhito KONDO, Ryo SUZUKI, Hiroshi NOZAKI, Jun YOSHIDA, Tetsuya WASEDA, Mitsutoshi OTAKI
  • Patent number: 11851733
    Abstract: The manufacturing method of a porous silicon material of the present disclosure includes a particle forming step of melting a raw material containing Al as a first element in an amount of 50% by mass or more and Si in an amount of 50% by mass or less to obtain a silicon alloy, a pore forming step of removing the first element from the silicon alloy to obtain a porous material, and a heat treatment step of heating the porous material to diffuse elements other than Si to a surface of the porous material.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: December 26, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Kawaura, Yasuhito Kondo, Ryo Suzuki, Hiroshi Nozaki, Jun Yoshida, Tetsuya Waseda, Mitsutoshi Otaki
  • Publication number: 20230265542
    Abstract: The manufacturing method of a porous silicon material of the present disclosure includes a particle forming step of melting a raw material containing Al as a first element in an amount of 50% by mass or more and Si in an amount of 50% by mass or less to obtain a silicon alloy, a pore forming step of removing the first element from the silicon alloy to obtain a porous material, and a heat treatment step of heating the porous material to diffuse elements other than Si to a surface of the porous material.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Applicant: TOTOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Kawaura, Yasuhito Kondo, Ryo Suzuki, Hiroshi Nozaki, Jun Yoshida, Tetsuya Waseda, Mitsutoshi Otaki
  • Publication number: 20230021456
    Abstract: A liquid composition is for use to feed carrier ions to a non-aqueous electrolyte secondary battery. The liquid composition includes a solvent and a dissolved substance. The dissolved substance includes an ionic compound. The ionic compound consists of a radical anion of an aromatic compound and a metal cation. The aromatic compound is a polyacene or a polyphenyl. The metal cation is an ion of the same type as the carrier ions.
    Type: Application
    Filed: August 30, 2022
    Publication date: January 26, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko NAGAYA, Shinobu OKAYAMA, Yukimasa NISHIDE, Nobuhiro OGIHARA, Yasuhito KONDO, Tsuyoshi SASAKI
  • Publication number: 20220411897
    Abstract: The manufacturing method of a porous silicon material of the present disclosure includes a particle forming step of melting a raw material containing Al as a first element in an amount of 50% by mass or more and Si in an amount of 50% by mass or less to obtain a silicon alloy, a pore forming step of removing the first element from the silicon alloy to obtain a porous material, and a heat treatment step of heating the porous material to diffuse elements other than Si to a surface of the porous material.
    Type: Application
    Filed: June 20, 2022
    Publication date: December 29, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Kawaura, Yasuhito Kondo, Ryo Suzuki, Hiroshi Nozaki, Jun Yoshida, Tetsuya Waseda, Mitsutoshi Otaki
  • Publication number: 20220181694
    Abstract: A main object of the present disclosure is to provide a composition capable of conveniently feeding carrier ions which contribute to charge and discharge. The present disclosure achieves the object by providing an electrolyte solution-containing liquid composition for use to feed carrier ions to a non-aqueous electrolyte secondary battery, the electrolyte solution-containing liquid composition comprises a liquid composition including a solvent and a dissolved substance; and an electrolyte solution, a content of the electrolyte solution in the electrolyte solution-containing liquid composition is 30% by volume or more and 50% by volume or less, the solvent includes 1,2-dimethoxyethane, the dissolved substance includes an ionic compound, the ionic compound is composed of a radical anion of an aromatic compound and a metal cation, the aromatic compound is polyacene or polyphenyl, and the metal cation being an ion of the same type as the carrier ions.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 9, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko NAGAYA, Shinobu OKAYAMA, Nobuhiro OGIHARA, Yasuhito KONDO, Tsuyoshi SASAKI
  • Publication number: 20210384499
    Abstract: A main object of the present disclosure is to provide a method for producing an active material with a high productivity. The present disclosure achieves the object by providing a method for producing an active material, the method comprising steps of: a preparing step of preparing a dope solution including a metal ion that is an ion of a metal element M, and an aromatic hydrocarbon compound in a reduced condition, a precursor alloy producing step of producing a precursor alloy by doping the metal element M included in the dope solution to a Si raw material including a Si element, and a void forming step of forming a void by extracting the metal element M from the precursor alloy using an extracting agent.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 9, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya WASEDA, Jun YOSHIDA, Hiroyuki KAWAURA, Yasuhito KONDO, Ryo SUZUKI, Hiroyuki NAKANO, Nobuhiro OGIHARA
  • Publication number: 20210083334
    Abstract: A liquid composition is for use to feed carrier ions to a non-aqueous electrolyte secondary battery. The liquid composition includes a solvent and a dissolved substance. The dissolved substance includes an ionic compound. The ionic compound consists of a radical anion of an aromatic compound and a metal cation. The aromatic compound is a polyacene or a polyphenyl. The metal cation is an ion of the same type as the carrier ions.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 18, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko NAGAYA, Shinobu OKAYAMA, Yukimasa NISHIDE, Nobuhiro OGIHARA, Yasuhito KONDO, Tsuyoshi SASAKI
  • Patent number: 10950860
    Abstract: A graphite material for a negative electrode of a lithium ion secondary cell disclosed herein is substantially configured of a graphite particle in which defects enabling intercalation/deintercalation of lithium ions have been formed on a basal plane and which includes a calcium (Ca) component.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuhisa Takeda, Hideaki Oka, Norihiko Setoyama, Yasuhito Kondo
  • Publication number: 20200287204
    Abstract: A negative electrode active substance material used for an electricity storage device of the present disclosure includes a silicon phase and a silicide phase represented by a basic composition formula MSi2, where M is one or more of Cr, Ti, Zr, Nb, Mo, and Hf. The negative electrode active substance material may have a structure in which the silicide phase is dispersed in the silicon phase.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 10, 2020
    Inventors: Hiroyuki KAWAURA, Yasuhito KONDO, Yoshinari MAKIMURA, Tetsuya WASEDA, Masaki ADACHI, Jun YOSHIDA, Hiroyuki YAMAGUCHI
  • Publication number: 20190081325
    Abstract: A graphite material for a negative electrode of a lithium ion secondary cell disclosed herein is substantially configured of a graphite particle in which defects enabling intercalation/deintercalation of lithium ions have been formed on a basal plane and which includes a calcium (Ca) component.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 14, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuhisa TAKEDA, Hideaki OKA, Norihiko SETOYAMA, Yasuhito KONDO
  • Patent number: 7675291
    Abstract: A battery characteristic detecting method according to the invention includes a first step in which constant current discharge from a battery is performed at a predetermined current value, and a voltage during constant current discharge is measured; a second step in which overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery is calculated based on the voltage measured in the first step; and a third step in which a determination that a characteristic change has occurred in the battery is made, when the overpotential for the mass transfer control in the battery or the resistance for the mass transfer control in the battery calculated in the second step is larger than a predetermined threshold value.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: March 9, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hidehito Matsuo, Tetsuro Kobayashi, Yuichi Itou, Yasuhito Kondo, Yoshio Ukyo, Yoshiaki Kikuchi, Motoyoshi Okumura
  • Publication number: 20080274405
    Abstract: The present invention is to provide a cathode active material for an alkaline battery with a lamellar crystal structure including nickel oxyhydroxide. The cathode active material has a diffraction peak at a position that ranges from 8.4 degrees to 10.4 degrees in diffraction angle 2? by X-ray diffraction using CuK?-rays. In addition, the present invention provides an alkaline battery having a cathode having a cathode active material, an anode having an anode active material, and an alkaline water solution as an electrolytic solution. Furthermore, the present invention provides a manufacturing method for a cathode active material for an alkaline battery with a lamellar crystal structure including nickel oxyhydroxide. The manufacturing method has an oxidation process for manufacturing the cathode active material by oxidizing a starting material made from ?-type nickel hydroxide with a lamellar crystal structure in an airstream including alkaline water solution or alkali.
    Type: Application
    Filed: May 30, 2005
    Publication date: November 6, 2008
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuro Kobayashi, Yasuhito Kondo, Hidehito Matsuo, Tsuyoshi Sasaki, Yuichi Itou, Hiroshi Nozaki, Takamasa Nonaka, Yoshiki Seno, Yoshio Ukyo, Masanori Ito
  • Publication number: 20080254366
    Abstract: An alkaline storage battery 1 has: a cathode 2 containing ?-type nickel hydroxide and/or ?-type nickel oxyhydroxide as a cathode active material; an anode 3 containing an anode active material; and an alkaline aqueous solution as an electrolytic solution 4. The alkaline storage battery 1 is configured to restrain at least part of a crystal structure of the cathode active material from changing due to charging or discharging and to restrain the cathode active material from exhibiting a new diffraction peak at a position that ranges from 8.4 degrees to 10.4 degrees in X-ray diffraction angle 2? by X-ray diffraction using CuK?-rays. It is preferable that an anion-exchange membrane layer 25 should be provided on a surface of the cathode 2.
    Type: Application
    Filed: May 30, 2005
    Publication date: October 16, 2008
    Inventors: Tetsuro Kobayashi, Yasuhito Kondo, Hidehito Matsuo, Tsuyoshi Sasaki, Yuichi Itou, Hiroshi Nozaki, Takamasa Nonaka, Yoshiki Seno, Yoshio Ukyo, Masanori Ito
  • Patent number: 7335291
    Abstract: There are provided a water treating method and water treating apparatus which can significantly improve an effect of eliminating microorganisms contained in water intended for drinking and cooking or waster water and a hydroponics system using the apparatus.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: February 26, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuhito Kondo, Yasuhiko Shimizu, Masahiro Iseki
  • Patent number: 7217346
    Abstract: There is provided a water treating method which can not only improve an effect of eliminating microorganisms in water intended for cooking and drinking or waste water but also prevent a reduction in trace amounts of nutritional elements. In the method, at least a pair of carbon fibers capable of collecting at least microorganisms are immersed in for-treatment water, potentials of opposite polarities are applied to the carbon fibers, and the polarities of the potentials are switched at a predetermined time interval so as to adsorb the microorganisms on the carbon fibers. After the microorganisms are adsorbed, a positive potential is applied to one of the carbon fibers, and a negative potential is applied to the other so as to cause electrolysis. Then, an alternating voltage is applied to the carbon fibers so as to heat the for-treatment water and the carbon fibers.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: May 15, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masahiro Iseki, Yasuhito Kondo
  • Patent number: 7156962
    Abstract: There are provided an electrode for electrolysis which takes into consideration safety to human bodies and environmental pollution upon disposal of the electrode, produces ozone with high efficiency and has excellent durability, a production process of the electrode, and an active oxygen producing device using the electrode. In an electrode 5 for electrolysis which has an electrode catalyst at least on the surface and produces ozone or active oxygen in for-treatment water by electrolysis, the electrode catalyst contains a dielectric which constitutes more than 70% of the surface area of the electrode catalyst.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: January 2, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tomohito Koizumi, Naoki Hiro, Tsuyoshi Rakuma, Katsuhiko Mushiake, Masahiro Iseki, Hiroyuki Umezawa, Yurika Koizumi, Yasuhito Kondo
  • Patent number: 7135099
    Abstract: In a circulation system of treatment-object water (waste water), a water treating apparatus and a pH adjuster are provided. A carbon fiber that can collect at least microorganisms is disposed in the water treating apparatus. The carbon fiber is immersed in the treatment-object water, and potential is applied to the carbon fiber. Further, pH of the treatment-object water is adjusted by the pH adjuster in a direction in which adsorption of microorganisms in the treatment-object water to the carbon fiber is facilitated. As a result, the microorganisms are strongly attracted and adsorbed to the carbon fiber.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: November 14, 2006
    Assignee: Sanyo Electric Co. Ltd.
    Inventors: Yasuhito Kondo, Masahiro Iseki
  • Publication number: 20060238168
    Abstract: A battery characteristic detecting method according to the invention includes a first step in which constant current discharge from a battery is performed at a predetermined current value, and a voltage during constant current discharge is measured; a second step in which overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery is calculated based on the voltage measured in the first step; and a third step in which a determination that a characteristic change has occurred in the battery is made, when the overpotential for the mass transfer control in the battery or the resistance for the mass transfer control in the battery calculated in the second step is larger than a predetermined threshold value.
    Type: Application
    Filed: August 18, 2004
    Publication date: October 26, 2006
    Inventors: Hidehito Matsuo, Tetsuro Kobayashi, Yuichi Itou, Yasuhito Kondo, Yoshio Ukto, Yoshiaki Kikuchi, Motoyoshi Okumura