Patents by Inventor Yasuke TANABE

Yasuke TANABE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9469158
    Abstract: Provided is a thioester modified polymer, wherein a polymer having an intramolecular double bond is modified with at least one of thiocarboxylic acid and dithiocarboxylic acid. The above thioester modified polymer can be manufactured by allowing a polymer having an intramolecular double bond to react with thiocarboxylic acid, dithiocarboxylic acid or a metal salt thereof, and used to be compounded in a diene-based rubber. When this thioester modified polymer is compounded in a diene-based rubber, in particular a silica containing diene-based rubber, tensile strength and breaking elongation, in particular tensile strength and breaking elongation at a high temperature (100° C.), can be improved without decreasing modulus, hardness, exothermicity and the like. Therefore, the rubber composition having excellent thermal resistance and toughness can be effectively used as a rubber compound for forming a cap tread or a side tread of a pneumatic tire.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: October 18, 2016
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventor: Yasuke Tanabe
  • Publication number: 20150315300
    Abstract: Provided is a thioester modified polymer, wherein a polymer having an intramolecular double bond is modified with at least one of thiocarboxylic acid and dithiocarboxylic acid. The above thioester modified polymer can be manufactured by allowing a polymer having an intramolecular double bond to react with thiocarboxylic acid, dithiocarboxylic acid or a metal salt thereof, and used to be compounded in a diene-based rubber. When this thioester modified polymer is compounded in a diene-based rubber, in particular a silica containing diene-based rubber, tensile strength and breaking elongation, in particular tensile strength and breaking elongation at a high temperature (100° C.), can be improved without decreasing modulus, hardness, exothermicity and the like. Therefore, the rubber composition having excellent thermal resistance and toughness can be effectively used as a rubber compound for forming a cap tread or a side tread of a pneumatic tire.
    Type: Application
    Filed: December 6, 2013
    Publication date: November 5, 2015
    Inventor: Yasuke TANABE