Patents by Inventor Yasuki Fujiwara

Yasuki Fujiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288488
    Abstract: The present invention aims at providing a process for producing a solid catalyst for olefin polymerization, the solid catalyst component being capable of providing a polymer having high stereoregularity when an ?-olefin is polymerized; a process for producing a solid catalyst component, which is used for producing the solid catalyst; and a process for producing an olefin polymer using the solid catalyst. This object can be achieved by a process for producing a solid catalyst component (A), the process including a step of bringing a titanium compound (a), a magnesium compound (b) and an internal electron donor represented by Formula (I) into contact with each other: where R1 is a hydrocarbyl group having 1 to 20 carbon atoms; R2, R3, R4, and R5 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbyl group having 1 to 20 carbon atoms, and at least one selected from R2, R3, R4, and R5 is a hydrocarbyl group having 1 to 20 carbon atoms; and R6 is a halogen atom.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 16, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Wataru Hirahata, Hirofumi Hamaki
  • Patent number: 8138284
    Abstract: A production process of a propylene block copolymer, comprising the steps of (I) contacting a solid catalyst component containing titanium atoms, magnesium atoms and halogen atoms with an organoaluminum compound and an external electron donor represented by the defined formula, thereby forming a polymerization catalyst, (II) polymerizing propylene in the presence of the polymerization catalyst, thereby forming a polymer component (1) having an intrinsic viscosity, [?]1, and (III) copolymerizing propylene with an olefin other than propylene in the presence of the polymer component (1), thereby forming a polymer component (2) having an intrinsic viscosity, [?]2, which is three times or more [?]1.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 20, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasuki Fujiwara
  • Patent number: 8119738
    Abstract: There are provided a polypropylene resin composition and a molded article thereof, the composition comprising: 60 to 85% by weight of a propylene homopolymer; and 15 to 40% by weight of an ethylene-?-olefin random copolymer containing 45 to 70 parts by mol of ethylene units, and 30 to 55 parts by mol of ?-olefin units, and satisfying the following requirements (1) to (5), (1) the propylene homopolymer has a melting temperature of 163 to 170° C.; (2) the propylene homopolymer contains 0.01% or less of regio defects resulted from a 2,1-insertion and a 1,3-insertion in all propylene units; (3) the polypropylene resin composition has a ratio B/A of 0.9 or more, provided that A (% by weight) is an amount of the ethylene-?-olefin random copolymer contained in the polypropylene resin composition, and B (% by weight) is an amount of soluble parts in xylene at a room temperature contained in the polypropylene resin composition; (4) the ethylene-?-olefin random copolymer has a molecular weight distribution of 2.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 21, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Shuichi Kimata, Hideki Oshima
  • Publication number: 20110301296
    Abstract: A propylene block copolymer comprising 60 to 85% by weight of a propylene polymer component and 15 to 40% by weight of an ethylene-propylene copolymer component, and satisfying the following requirements (I) to (V): (I) the above propylene polymer component has a melting temperature of 160° C. or higher measured according to DSC; (II) the above ethylene-propylene copolymer component has an ethylene content of 40 to 60% by weight measured according to a 13C-NMR spectrum; (III) the above ethylene-propylene copolymer component has a crystallization peak between 90 to 105° C. in its DSC measurement, and the above crystallization peak is 2 to 10 J in its heat of crystallization, per 1 g of the above ethylene-propylene copolymer component; (IV) the above ethylene-propylene copolymer component has a glass transition temperature of ?50° C.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki FUJIWARA
  • Publication number: 20110275765
    Abstract: There are provided an ethylene-propylene copolymer having the following structural characteristics, and a polypropylene resin composition comprising the above copolymer and polypropylene having a melting temperature of 160° C. or higher: (1) its propylene content is 20 to 60% by mol; (2) its product of a monomer reactivity ratio is less than 2.5; (3) its intrinsic viscosity is more than 1.0 dl/g; (4) its molecular weight distribution is more than 3; (5) its glass transition temperature is lower than ?40° C.; (6) its heat of crystallization is less than 5.0 J/g; (7) in a temperature rising elution fractionation method, its elution amount is 60% by weight or more in a temperature range of lower than 10° C., its elution amount is 3% by weight or more in a temperature range of 10° C. to lower than 55° C., and its elution amount is 5% by weight or less in a temperature range of 83° C.
    Type: Application
    Filed: June 17, 2011
    Publication date: November 10, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki FUJIWARA, Makoto SATOH, Shinya NAKAHARA, Shin-ichi KUMAMOTO
  • Publication number: 20110269928
    Abstract: The present invention aims at providing a solid catalyst component for olefin polymerization, the solid catalyst composed being capable of showing a sufficiently high polymerization activity and providing a polymer having a low content of a low molecular weight component or an amorphous component; a process for producing the solid catalyst component; and a process for producing a solid catalyst for olefin polymerization, and a process for producing an olefin polymer.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki FUJIWARA, Wataru HIRAHATA
  • Publication number: 20110269929
    Abstract: The present invention aims at providing a process for producing a solid catalyst for olefin polymerization, the solid catalyst component being capable of providing a polymer having high stereoregularity when an ?-olefin is polymerized; a process for producing a solid catalyst component, which is used for producing the solid catalyst; and a process for producing an olefin polymer using the solid catalyst. This object can be achieved by a process for producing a solid catalyst component (A), the process including a step of bringing a titanium compound (a), a magnesium compound (b) and an internal electron donor represented by Formula (I) into contact with each other: where R1 is a hydrocarbyl group having 1 to 20 carbon atoms; R2, R3, R4, and R5 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbyl group having 1 to 20 carbon atoms, and at least one selected from R2, R3, R4, and R5 is a hydrocarbyl group having 1 to 20 carbon atoms; and R6 is a halogen atom.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki FUJIWARA, Wataru HIRAHATA, Hirofumi HAMAKI
  • Patent number: 8039552
    Abstract: A production process of a propylene block copolymer, comprising the step (I) of polymerizing propylene alone or a combination of propylene with an olefin other than propylene, in the presence of a defined polymerization catalyst, to form a polymer component (1), and the step (II) of copolymerizing propylene with an olefin other than propylene in the presence of the polymer component (1), to form a polymer component (2), wherein a combination of a transition metal compound such as Zr(OR1)4 and Hf(OR1)4 (R1 being a hydrocarbon group) with an ether group-containing linear hydrocarbon compound and/or a Lewis base compound is added to the above polymerization system between the ending point of the step (I) and the starting point of the step (II), or during the step (II).
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: October 18, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasuki Fujiwara
  • Publication number: 20100280197
    Abstract: A process for producing a modified particle, which involves the step of contacting with one another compounds (a), (b) and (c) represented by the defined general formulas M1L1m, R1t-1TH and H2O, respectively, and a particle (d), in which M1 is a metal atom of Group 1, 2, 12, 14 or 15 of the periodic table, m is a valence of M1, L1 is a hydrogen atom, a halogen atom or a hydrocarbon group, which may be the same or different when plural L1's exist, R1 is an electron-withdrawing group or an electron-withdrawing group-containing group, which may be the same or different when plural R1's exist, T is a non-metal atom of Group 15 or 16 of the periodic table, and t is a valence of T; and a particle (d), wherein the compound (a) to (c) and the particle (d) are contacted in defined orders and in defined solvents; a carrier comprising said modified particle; a catalyst component for addition polymerization comprising said modified particle; a catalyst for addition polymerization using said catalyst component; and a proc
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: Kazuo TAKAOKI, Takuya Ogane, Hideki Oshima, Yasuki Fujiwara, Kenichiro Yada, Masatada Tasaka
  • Publication number: 20100168341
    Abstract: A production process of a propylene block copolymer, comprising the steps of (I) contacting a solid catalyst component containing titanium atoms, magnesium atoms and halogen atoms with an organoaluminum compound and an external electron donor represented by the defined formula, thereby forming a polymerization catalyst, (II) polymerizing propylene in the presence of the polymerization catalyst, thereby forming a polymer component (1) having an intrinsic viscosity, [?]1, and (III) copolymerizing propylene with an olefin other than propylene in the presence of the polymer component (1), thereby forming a polymer component (2) having an intrinsic viscosity, [?]2, which is three times or more [?]1.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 1, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki FUJIWARA
  • Publication number: 20100168349
    Abstract: A production process of an ?-olefin polymerization catalyst, comprising the steps of (1) reducing a titanium compound represented by a defined formula with an organomagnesium compound in the presence of an Si—O bond-containing silicon compound, (2) contacting the resultant solid catalyst component precursor, a halogenating compound and an internal electron donor with one another, and (3) contacting the resultant solid catalyst component, an organoaluminum compound and a Si-containing external electron donor represented by a defined formula with one another; and a production process of an olefin polymer using the above catalyst.
    Type: Application
    Filed: December 4, 2009
    Publication date: July 1, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki FUJIWARA
  • Publication number: 20100144974
    Abstract: A polypropylene-based copolymer containing 50 to 95% by weight of a polymer component comprising 95% by weight or more of the constitutional unit derived from propylene and having a melting point exceeding 155° C. (component A) and 5 to 50% by weight of a copolymer component of propylene, ethylene and an ?-olefin having 4 or more carbon atoms (component B) in which the content of the constitutional unit derived from propylene (X) is 10% by weight?X<50% by weight, the content of the constitutional unit derived from ethylene (Y) is 50% by weight<Y?70% by weight, the content of the constitutional unit derived from an ?-olefin having 4 or more carbon atoms (Z) is 0% by weight<Z?20% by weight, provided that the sum total of X, Y and Z is 100% by weight, and the ratio of Z to X is 1 or less.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 10, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kenji IKEDA, Shigeki Kishiro, Makoto Satoh, Yasuki Fujiwara
  • Publication number: 20100048822
    Abstract: There are provided a polypropylene resin composition and a molded article thereof, the composition comprising: 60 to 85% by weight of a propylene homopolymer; and 15 to 40% by weight of an ethylene-?-olefin random copolymer containing 45 to 70 parts by mol of ethylene units, and 30 to 55 parts by mol of ?-olefin units, and satisfying the following requirements (1) to (5), (1) the propylene homopolymer has a melting temperature of 163 to 170° C.; (2) the propylene homopolymer contains 0.01% or less of regio defects resulted from a 2,1-insertion and a 1,3-insertion in all propylene units; (3) the polypropylene resin composition has a ratio B/A of 0.9 or more, provided that A (% by weight) is an amount of the ethylene-?-olefin random copolymer contained in the polypropylene resin composition, and B (% by weight) is an amount of soluble parts in xylene at a room temperature contained in the polypropylene resin composition; (4) the ethylene-?-olefin random copolymer has a molecular weight distribution of 2.
    Type: Application
    Filed: December 14, 2007
    Publication date: February 25, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki Fujiwara, Shuichi Kimata, Hideki Oshima
  • Publication number: 20100036058
    Abstract: A propylene block copolymer comprising 60 to 85% by weight of a propylene polymer component and 15 to 40% by weight of an ethylene-propylene copolymer component, and satisfying the following requirements (I) to (V): (I) the above propylene polymer component has a melting temperature of 160° C. or higher measured according to DSC; (II) the above ethylene-propylene copolymer component has an ethylene content of 40 to 60% by weight measured according to a 13C-NMR spectrum; (III) the above ethylene-propylene copolymer component has a crystallization peak between 90 to 105° C. in its DSC measurement, and the above crystallization peak is 2 to 10 J in its heat of crystallization, per 1 g of the above ethylene-propylene copolymer component; (IV) the above ethylene-propylene copolymer component has a glass transition temperature of ?50° C.
    Type: Application
    Filed: December 14, 2007
    Publication date: February 11, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki Fujiwara
  • Publication number: 20100004395
    Abstract: A production process of a propylene block copolymer, comprising the step (I) of polymerizing propylene alone or a combination of propylene with an olefin other than propylene, in the presence of a defined polymerization catalyst, to form a polymer component (1), and the step (II) of copolymerizing propylene with an olefin other than propylene in the presence of the polymer component (1), to form a polymer component (2), wherein a combination of a transition metal compound such as Zr(OR1)4 and Hf(OR1)4 (R1 being a hydrocarbon group) with an ether group-containing linear hydrocarbon compound and/or a Lewis base compound is added to the above polymerization system between the ending point of the step (I) and the starting point of the step (II), or during the step (II).
    Type: Application
    Filed: June 29, 2009
    Publication date: January 7, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki FUJIWARA
  • Publication number: 20090326157
    Abstract: There are provided an ethylene-propylene copolymer having the following structural characteristics, and a polypropylene resin composition comprising the above copolymer and polypropylene having a melting temperature of 160° C. or higher: (1) its propylene content is 20 to 60% by mol; (2) its product of a monomer reactivity ratio is less than 2.5; (3) its intrinsic viscosity is more than 1.0 dl/g; (4) its molecular weight distribution is more than 3; (5) its glass transition temperature is lower than ?40° C.; (6) its heat of crystallization is less than 5.0 J/g; (7) in a temperature rising elution fractionation method, its elution amount is 60% by weight or more in a temperature range of lower than 10° C., its elution amount is 3% by weight or more in a temperature range of 10° C. to lower than 55° C., and its elution amount is 5% by weight or less in a temperature range of 83° C.
    Type: Application
    Filed: December 14, 2007
    Publication date: December 31, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki Fujiwara, Makoto Satoh, Shinya Nakahara, Shin-ichi Kumamoto
  • Publication number: 20090326158
    Abstract: A propylene block copolymer satisfying the following requirements, which is obtained by producing in the step 1 a propylene polymer component (1), producing in the step 2 a propylene copolymer component (2) in the presence of the component (1), and producing in the step 3 an ethylene copolymer component (3) in the presence of the components (1) and (2): the component (1) has a melting temperature of 155° C. or higher; the component (2) contains 40 to 50% by mol of ethylene, and has an intrinsic viscosity of 2.0 to 8.0 dl/g; the component (3) contains 45 to 70% by mol of ethylene, and has an intrinsic viscosity of 3.0 to 8.0 dl/g, provided that the ethylene content is larger than the ethylene content in the propylene polymer component (2); a ratio by weight of the component (2) to the component (3) is 1/10 to 1/1; the propylene block copolymer has a glass transition temperature of ?55.0° C.
    Type: Application
    Filed: December 14, 2007
    Publication date: December 31, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki Fujiwara
  • Publication number: 20090171030
    Abstract: A polypropylene-based copolymer containing 50 to 95% by weight of a polymer component (component A) mainly comprising the constitutional unit derived from propylene and having a melting point exceeding 155° C. and 5 to 50% by weight of a copolymer component (component B) of propylene, ethylene and an ?-olefin having 4 or more carbon atoms in which the content (X) of the constitutional unit derived from propylene is 10?X<50% by weight, the content (Y) of the constitutional unit derived from ethylene is 50<Y?70% by weight, the content (Z) of the constitutional unit derived from an ?-olefin having 4 or more carbon atoms is 0<Z?20% by weight (provided that the total of X, Y and Z is 100% by weight), and the weight ratio of the content (Z) of the constitutional unit derived from an ?-olefin having 4 or more carbon atoms to the content (X) of the constitutional unit derived from propylene is 1 or less.
    Type: Application
    Filed: December 22, 2008
    Publication date: July 2, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kenji IKEDA, Shigeki Kishiro, Makoto Satoh, Yasuki Fujiwara
  • Patent number: 7135532
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: November 14, 2006
    Assignee: Sunitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh
  • Publication number: 20050079973
    Abstract: There are disclosed a process for producing a solid catalyst component and a catalyst for ?-olefin polymerization, and a process for producing an ?-olefin polymer, wherein the process for producing a solid catalyst component comprises the steps of: (1) reducing a specific titanium compound with an organomagnesium compound in the presence of an organosilicon compound having an Si—O bond (and an ester compound), thereby obtaining a solid product, and (2) contacting the solid product with a halogeno compound of the 14 group element, at least one member selected from the group consisting of an electron donor compound and an organic acid halide, and a compound having a Ti-halogen bond, thereby obtaining the solid catalyst component.
    Type: Application
    Filed: October 6, 2004
    Publication date: April 14, 2005
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Makoto Satoh