Patents by Inventor Yasuko Tanabe

Yasuko Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9708586
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: July 18, 2017
    Assignee: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Publication number: 20150247129
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 3, 2015
    Applicant: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Patent number: 9074239
    Abstract: A flavin-binding glucose dehydrogenase (FAD-GDH), which in addition to having high substrate specificity and adequate desirable heat stability, is suitable for efficient production, preferably using E. coli, yeast or molds and the like as host cells. The FAD-GDH has amino acid substitutions at positions equivalent to one or more locations selected from the group consisting of position 213, position 368 and position 526 in the amino acid sequence described in SEQ ID NO: 8. The FAD-GDH is acquired from a culture by inserting a gene encoding the FAD-GDH into host cells such as E. coli. A preferable example of the FAD-GDH is FAD-GDH, in which a signal peptide region present in an N-terminal region has been deleted from the amino acid sequence of Mucor-derived FAD-GDH, and which has the aforementioned amino acid substitutions. The FAD-GDH can be preferably used in clinical diagnosis.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 7, 2015
    Assignee: KIKKOMAN CORPORATION
    Inventors: Ryoko Tajima, Kozo Hirokawa, Eriko Yoshihara, Yasuko Tanabe
  • Patent number: 9062286
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 23, 2015
    Assignee: Kikkoman Corporation
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari
  • Publication number: 20140287445
    Abstract: A flavin-binding glucose dehydrogenase (FAD-GDH), which in addition to having high substrate specificity and adequate desirable heat stability, is suitable for efficient production, preferably using E. coli, yeast or molds and the like as host cells. The FAD-GDH has amino acid substitutions at positions equivalent to one or more locations selected from the group consisting of position 213, position 368 and position 526 in the amino acid sequence described in SEQ ID NO: 8. The FAD-GDH is acquired from a culture by inserting a gene encoding the FAD-GDH into host cells such as E. coli. A preferable example of the FAD-GDH is FAD-GDH, in which a signal peptide region present in an N-terminal region has been deleted from the amino acid sequence of Mucor-derived FAD-GDH, and which has the aforementioned amino acid substitutions. The FAD-GDH can be preferably used in clinical diagnosis.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 25, 2014
    Inventors: Ryoko Tajima, Kozo Hirokawa, Eriko Yoshihara, Yasuko Tanabe
  • Publication number: 20130267007
    Abstract: This invention provides an amadoriase having high substrate specificity to fructosyl valyl histidine. Such amadoriase comprises substitution of one or more amino acid residues at positions corresponding to amino acids selected from the group consisting of position 98, position 259, position 154, position 125, position 261, position 263, position 106, position 103, position 355, position 96, position 66, position 67, position 70, position 100, position 110, position 113, position 114, and position 156 in the amadoriase derived from the genus Coniochaeta. This invention enables accurate measurement of ?-fructosyl valyl histidine derived from the ?-chain amino terminus in glycated hemoglobin in the presence of ?-fructosyl lysine.
    Type: Application
    Filed: August 4, 2011
    Publication date: October 10, 2013
    Inventors: Atsushi Ichiyanagi, Kozo Hirokawa, Yasuko Tanabe, Yosuke Masakari