Patents by Inventor Yasukuni Tanaka

Yasukuni Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230327155
    Abstract: A fuel cell system (200) and a method (900) for controlling temperature of a heat transfer fluid in a fuel cell system (200). The system (200) comprising at least one fuel cell stack (205) comprising at least one fuel cell, and having an anode inlet, an anode off-gas outlet for flow of anode off-gas. The system (200) further comprising a first heat exchanger (215) coupled to receive the anode off-gas which has been output form the anode off-gas outlet, the first heat exchanger (215) configured to exchange heat between the anode off-gas and a heat transfer fluid to cool the anode off-gas and heat the heat transfer fluid. The system (200) further comprising a second heat exchanger (230) that is configured to provide heat to the heat transfer fluid and a heat removal region (235) that is configured to remove heat from the heat transfer fluid.
    Type: Application
    Filed: August 17, 2021
    Publication date: October 12, 2023
    Inventors: Oliver Postlethwaite, Simone Dozio, Yuto Wakita, Yoshiki Nakazato, Toshifumi Sone, Takuya Saeki, Yasukuni Tanaka
  • Patent number: 9759449
    Abstract: Feedwater to be supplied to a feedwater tank via a feedwater path is passed through a waste heat recovery heat exchanger, a supercooler, and a condenser in sequence. A heat source fluid such as heat source water is passed through an evaporator and the waste heat recovery heat exchanger in sequence. The waste heat recovery heat exchanger is an indirect heat exchanger between the feedwater supplied to the feedwater tank via the feedwater path and the heat source fluid having passed through the evaporator. The supercooler is an indirect heat exchanger between the feedwater supplied to the feedwater tank via the feedwater path and a refrigerant supplied from the condenser to an expansion valve.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: September 12, 2017
    Assignee: MIURA CO., LTD.
    Inventors: Kazuyuki Ootani, Yasukuni Tanaka, Masanori Takemoto, Rikki Sugiura, Tomoya Oozawa
  • Publication number: 20150059379
    Abstract: Feedwater to be supplied to a feedwater tank via a feedwater path is passed through a waste heat recovery heat exchanger, a supercooler, and a condenser in sequence. A heat source fluid such as heat source water is passed through an evaporator and the waste heat recovery heat exchanger in sequence. The waste heat recovery heat exchanger is an indirect heat exchanger between the feedwater supplied to the feedwater tank via the feedwater path and the heat source fluid having passed through the evaporator. The supercooler is an indirect heat exchanger between the feedwater supplied to the feedwater tank via the feedwater path and a refrigerant supplied from the condenser to an expansion valve.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 5, 2015
    Inventors: Kazuyuki Ootani, Yasukuni Tanaka, Masanori Takemoto, Rikki Sugiura, Tomoya Oozawa
  • Patent number: 8844290
    Abstract: A steam engine and an electric motor are arranged, which respectively drives an air compressor. The compressed air from the air compressor is supplied to a compressed air using device through a common air tank. The steam is supplied to the steam engine through a steam supply path, and the steam used in the steam engine is supplied to a steam using device through a steam exhaust path. The steam pressure is monitored by a pressure sensor arranged in a steam header ahead of the steam exhaust path. The air pressure is monitored by a pressure sensor arranged in an air tank. A steam supply valve is controlled based on the steam pressure and the air pressure, and the electric motor is controlled based on the air pressure. The steam engine is preferentially driven over the electric motor by shifting the target value of the air pressure.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: September 30, 2014
    Assignee: Miura Co., Ltd.
    Inventors: Yuji Yoshinari, Yasuo Ochi, Hideo Furukawa, Yasukuni Tanaka, Yusuke Okamoto, Kazutaka Baba
  • Patent number: 8522523
    Abstract: An air compressor is driven by a steam engine that generates power using steam. The steam is supplied to the steam engine through a steam supply path, and the steam is exhausted through a steam exhaust path. The steam from the steam engine is supplied to a steam using device through a steam header. The usage load of the steam is monitored by a pressure sensor arranged in the steam header. The compressed air from the air compressor is supplied to a compressed air using device through a compressed air path. The usage load of the compressed air is monitored by a pressure sensor arranged on the compressed air path. The steam supply to the steam engine is controlled based on the usage load of the steam and the usage load of the compressed air.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: September 3, 2013
    Assignee: Miura Co., Ltd.
    Inventors: Yuji Yoshinari, Yasuo Ochi, Hideo Furukawa, Yasukuni Tanaka, Yusuke Okamoto, Kazutaka Baba
  • Publication number: 20110005228
    Abstract: A steam engine and an electric motor are arranged, which respectively drives an air compressor. The compressed air from the air compressor is supplied to a compressed air using device through a common air tank. The steam is supplied to the steam engine through a steam supply path, and the steam used in the steam engine is supplied to a steam using device through a steam exhaust path. The steam pressure is monitored by a pressure sensor arranged in a steam header ahead of the steam exhaust path. The air pressure is monitored by a pressure sensor arranged in an air tank. A steam supply valve is controlled based on the steam pressure and the air pressure, and the electric motor is controlled based on the air pressure. The steam engine is preferentially driven over the electric motor by shifting the target value of the air pressure.
    Type: Application
    Filed: April 14, 2008
    Publication date: January 13, 2011
    Applicant: MIURA CO., LTD
    Inventors: Yuji Yoshinari, Yasuo Ochi, Hideo Furukawa, Yasukuni Tanaka, Yusuke Okamoto, Kazutaka Baba
  • Publication number: 20110000180
    Abstract: An air compressor is driven by a steam engine that generates power using steam. The steam is supplied to the steam engine through a steam supply path, and the steam is exhausted through a steam exhaust path. The steam from the steam engine is supplied to a steam using device through a steam header. The usage load of the steam is monitored by a pressure sensor arranged in the steam header. The compressed air from the air compressor is supplied to a compressed air using device through a compressed air path. The usage load of the compressed air is monitored by a pressure sensor arranged on the compressed air path. The steam supply to the steam engine is controlled based on the usage load of the steam and the usage load of the compressed air.
    Type: Application
    Filed: August 26, 2008
    Publication date: January 6, 2011
    Applicant: MIURA CO., LTD
    Inventors: Yuji Yoshinari, Yasuo Ochi, Hideo Furukawa, Yasukuni Tanaka, Yusuke Okamoto, Kazutaka Baba