Patents by Inventor Yasunobu Miyazaki

Yasunobu Miyazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11628511
    Abstract: Art for spot welding able to suppress penetration of hydrogen, one of the factors behind delayed fracture, at the time of spot welding, that is, a spot welding method in which at one or both of the surfaces of the steel sheets becoming the facing surfaces of the overlaid steel sheets, a location where the steel sheets contact each other to form a contact part at the time of initial squeezing of the spot welding is worked in advance to form a plurality of lines running through the contact part and connected to the outside of the contact part and the spot welding is performed at the location of the contact part and also a steel sheet in which the plurality of lines are formed in advance at the location becoming a contact part when steel sheets contact each other at the time of initial squeezing in the spot welding.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 18, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Sho Matsui, Masahiro Saito, Seiji Furusako, Yasunobu Miyazaki
  • Patent number: 11274356
    Abstract: A steel sheet having a chemical composition of the base metal including, in mass %, C: 0.17 to 0.40%, Si: 0.10 to 2.50%, Mn: 1.00 to 10.00%, P: 0.001 to 0.03%, S: 0.0001 to 0.02%, Al: 0.001 to 2.50%, N: 0.0001 to 0.010%, O: 0.0001 to 0.010%, Ti: 0 to 0.10%, Nb: 0 to 0.10%, V: 0 to 0.10%, B: 0 to 0.010%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 2.00%, Ca: 0 to 0.50%, Mg: 0 to 0.50%, REM: 0 to 0.50%, the balance: Fe and impurities, wherein the steel sheet has an internal oxidized layer in which at least one part of a crystal grain boundary is covered by oxides, and in which a grain boundary coverage ratio of oxides is 60% or more in a region from the surface of the base metal to a depth of 5.0 ?m.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: March 15, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kengo Takeda, Kunio Hayashi, Akihiro Uenishi, Hiroyuki Kawata, Chisato Yoshinaga, Yasunobu Miyazaki, Toyomitsu Nakamura
  • Patent number: 11065705
    Abstract: A welding method for obtaining a lap fillet welded joint excellent in tensile strength, without causing an increase in welding deformation, not fracturing at the weld metal when a tensile load is applied, that is, a method of overlaying at least scheduled welding locations of a first steel sheet with a tensile strength of 780 MPa or more and a second steel sheet and fillet welding an end part of the first steel sheet and a surface of the second steel sheet, characterized by providing a reinforcing part at a surface of the first steel sheet at the opposite side to the surface to be overlaid with the second steel sheet and fillet welding one end part of the reinforcing material and the surface of the first steel sheet and by fillet welding the end part of the reinforcing part, the end part of the first steel sheet, and the surface of the second steel sheet so as to be covered by the weld metal.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 20, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yujiro Tatsumi, Yasunobu Miyazaki, Shinji Kodama
  • Patent number: 11027361
    Abstract: By obtaining a spot-welded joint being a spot-welded joint formed by overlapping a plurality of pieces of steel plates (1A, 1B) and performing spot welding on the steel plates, including a high-strength steel plate whose tensile strength is 750 (MPa) to 2500 (MPa), being at least one piece of steel plate out of the plurality of pieces of steel plates, in which a carbon equivalent Ceq of the high-strength steel plate is 0.20 mass % to 0.55 mass %, and ten or more of iron-based carbides in each of which a length of a longest portion is 0.1 (?m) or more exist in a square region 103 within a heat-affected zone 4 of a cross section that passes through a center of a welding mark, and is cut along a plate thickness direction of the steel plates (1A, 1B), a cross tensile strength of the spot-welded joint to be formed is improved.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 8, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Chisato Wakabayashi, Fuminori Watanabe, Seiji Furusako, Yasunobu Miyazaki, Hiroyuki Kawata, Tohru Okada, Hideki Hamatani
  • Patent number: 11007598
    Abstract: The present invention provides a spot welding method for a member to be welded constituted of a plurality of steel sheets that are overlapped with each other at at least a welding zone, in which at least an overlapped face of at least one of the plurality of steel sheets at the welding zone is coated with zinc plating, a total sheet thickness t (mm) of the plurality of steel sheets is 1.35 mm or more, a squeeze time St (seconds) from the time when welding electrodes are brought into contact with the member to be welded to the time when electric current flow for welding starts satisfies “0.020?St”, and a hold time Ht( seconds) after welding from the time when electric current flow for welding between the welding electrodes ends to the time when the welding electrodes and the member to be welded are brought out of contact satisfies “0.015t2+0.020?Ht”.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 18, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Chisato Yoshinaga, Yasunobu Miyazaki, Kunio Hayashi, Hiroyuki Kawata, Masanori Yasuyama
  • Patent number: 10994364
    Abstract: A spot welded joint in which a high CTS is obtained even if including one or more high strength steel sheets and a method of welding of the same, that is, a spot welded joint 1 including a plurality of steel sheets, wherein one or more steel sheets is a tensile strength 750 to 2500 MPa high strength steel sheet and, at a cross-section in the sheet thickness direction of the steel sheets, when defining superposed surfaces of a high strength steel sheet S1 arranged at an outermost side and another steel sheet 1B as the “plane A” and defining a plane passing through a point of one-half of a distance between a nugget end position E of a high strength steel sheet S1 side on the line L1 in the sheet thickness direction and a crossing point O of the plane A and the line L1 and parallel to the plane A as the “plane B”, at a square area SA of sides of 30 ?m centered about a crossing point X of a line L2, which is separated by 250 ?m to the heat affected zone side from a tangent at any position on a nugget end line NEL
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: May 4, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Chisato Yoshinaga, Seiji Furusako, Fuminori Watanabe, Yasunobu Miyazaki, Tohru Okada
  • Patent number: 10828717
    Abstract: A lap welding method of a steel sheet includes spot welding in a state in which the flange portion of a second steel sheet member having the flange portion and a standing wall portion is overlapped with the first steel sheet member, thereby forming a nugget between a first steel sheet member and a flange portion; and, after the spot welding, laser welding a region between an R stop of the standing wall portion and the nugget, thereby forming a weld bead, and, in the weld bead, a length dimension is equal to or longer than a diameter of the nugget, and a width dimension is 0.5 to 3.0 mm.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 10, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Seiji Furusako, Tohru Okada, Koichi Sato, Yasunobu Miyazaki
  • Patent number: 10807138
    Abstract: A tailored blank for hot stamping includes a welded portion formed by butt-welding a first aluminum-plated steel sheet and a second aluminum-plated steel sheet, an Average Al concentration of a weld metal in the welded portion is in a range of 0.3 mass % to 1.5 mass %, an Ac3 point of the weld metal is 1250° C. or lower, and furthermore, an aluminum layer formed during the butt-welding is present on a surface of the welded portion.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 20, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yasunobu Miyazaki, Yasuaki Naito, Kaoru Kawasaki, Takahiro Yoshinaga
  • Publication number: 20200325554
    Abstract: A steel sheet having a chemical composition of the base metal including, in mass %, C: 0.17 to 0.40%, Si: 0.10 to 2.50%, Mn: 1.00 to 10.00%, P: 0.001 to 0.03%, S: 0.0001 to 0.02%, Al: 0.001 to 2.50%, N: 0.0001 to 0.010%, O: 0.0001 to 0.010%, Ti: 0 to 0.10%, Nb: 0 to 0.10%, V: 0 to 0.10%, B: 0 to 0.010%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 2.00%, Ca: 0 to 0.50%, Mg: 0 to 0.50%, REM: 0 to 0.50%, the balance: Fe and impurities, wherein the steel sheet has an internal oxidized layer in which at least one part of a crystal grain boundary is covered by oxides, and in which a grain boundary coverage ratio of oxides is 60% or more in a region from the surface of the base metal to a depth of 5.0 ?m.
    Type: Application
    Filed: December 15, 2017
    Publication date: October 15, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Kengo TAKEDA, Kunio HAYASHI, Akihiro UENISHI, Hiroyuki KAWATA, Chisato YOSHINAGA, Yasunobu MIYAZAKI, Toyomitsu NAKAMURA
  • Publication number: 20200316707
    Abstract: The spot welding method of the present invention has steps of preliminary conduction, first conduction, second conduction, and third conduction: Preliminary conduction: Conduction method aimed at improving closeness of contact surfaces of steel sheets and reducing sheet gaps by gradually increasing the welding current (for example, upslope conduction). If rapidly applying current, current would be locally carried and that part would melt resulting in expulsion, so this is a conduction method gradually running current (for example upslope conduction) to avoid local heating. First conduction: Conduction method running a constant welding current and using the heat generated by the electrical contact resistance between steel sheets to cause the formation of a nugget when preliminary conduction results in close contact surfaces between the steel sheets.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Seiji FURUSAKO, Yasunobu MIYAZAKI, Hitomi NISHIBATA, Yasuo TAKAHASHI
  • Publication number: 20200269341
    Abstract: Art for spot welding able to suppress penetration of hydrogen, one of the factors behind delayed fracture, at the time of spot welding, that is, a spot welding method in which at one or both of the surfaces of the steel sheets becoming the facing surfaces of the overlaid steel sheets, a location where the steel sheets contact each other to form a contact part at the time of initial squeezing of the spot welding is worked in advance to form a plurality of lines running through the contact part and connected to the outside of the contact part and the spot welding is performed at the location of the contact part and also a steel sheet in which the plurality of lines are formed in advance at the location becoming a contact part when steel sheets contact each other at the time of initial squeezing in the spot welding.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 27, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Sho MATSUI, Masahiro SAITO, Seiji FURUSAKO, Yasunobu MIYAZAKI
  • Patent number: 10730134
    Abstract: The spot welding method of the present invention has steps of preliminary conduction, first conduction, second conduction, and third conduction: Preliminary conduction: Conduction method aimed at improving closeness of contact surfaces of steel sheets and reducing sheet gaps by gradually increasing the welding current (for example, upslope conduction). If rapidly applying current, current would be locally carried and that part would melt resulting in expulsion, so this is a conduction method gradually running current (for example upslope conduction) to avoid local heating. First conduction: Conduction method running a constant welding current and using the heat generated by the electrical contact resistance between steel sheets to cause the formation of a nugget when preliminary conduction results in close contact surfaces between the steel sheets.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: August 4, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Seiji Furusako, Yasunobu Miyazaki, Hitomi Nishibata, Yasuo Takahashi
  • Patent number: 10722976
    Abstract: A laser welded joint excellent in joint strength preventing a bead from cracking and comprised of exactly the number of weld beads required for joint strength in overlay laser welding of steel sheets forming multiple ring-shaped weld beads, produced by a step of overlaying a plurality of metal sheets and forming a first weld bead and a step of firing a laser beam to successively form a further two or more weld beads at the outside of the first weld bead by laser irradiation, the surface hardness of the weld bead increasing from the inside bead to the outside bead.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 28, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yasuaki Naito, Yasunobu Miyazaki
  • Patent number: 10722935
    Abstract: Provided is a mechanical joining apparatus enabling stable riveting when joining metal sheets even when the sheets are large in deformation resistance, the apparatus comprising a punch and die, blank holder and power device, wherein the punch and die are arranged facing each other, the holder is configured by an electrode material able to push against and electrically heat the sheets by one end of the holder, the punch is comprised of a material able to drive in a rivet, the die is comprised of an electrode material able to support and electrically heat the sheets, and the power device is configured to start supply of current through the holder and die so as to raise the temperature of the sheets at the same time as the start of driving in of the rivet and to continue to supply current until the end of driving in of the rivet.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 28, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Seiji Furusako, Tohru Okada, Yasunobu Miyazaki, Fuminori Watanabe, Yoshiaki Nakazawa
  • Patent number: 10697486
    Abstract: A laser welded joint has weld metal provided between a plurality of steel sheets. A chemical composition of the weld metal has predetermined components, and average hardness of the weld metal is 350 to 540 in Vickers hardness. In the weld metal, distribution density of porosities having a diameter of 2 ?m to 50 ?m is equal to or less than 5.0 pieces/mm2. In the weld metal, distribution density of oxide inclusions having a diameter of 3 ?m or more is 0.1 to 8.0 pieces/mm2.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 30, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Naoki Maruyama, Yasuaki Naito, Shigeru Yonemura, Yasunobu Miyazaki, Takuya Kuwayama
  • Patent number: 10646949
    Abstract: The present invention has as its object to provide a spot welded joint and spot welding method which raise the fracture toughness of spot welded metal to raise the strength of the spot welded joint. In the present invention, there is provided a spot welding method comprising a melt zone forming step forming a melt zone by conduction and, after the melt zone forming step, a solidification step of running a current lower than the current run in the melt zone forming step so as to cause the melt zone to solidify, wherein, in the solidification step, electromagnetic vibration is applied to the melt zone, and a frequency fV of the electromagnetic vibration, a solidification speed ?S when the melt zone solidifies, and an arm interval of dendrites ?D when the melt zone solidifies satisfy 0.2??S/(?D·fV)?4.0.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 12, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Fuminori Watanabe, Yasunobu Miyazaki
  • Patent number: 10603713
    Abstract: Provided is a mechanical joining apparatus enabling reduction of breakage of the area around a rivet of a joint obtained by riveting, the apparatus comprising a punch and die, blank holder, first power device, second power device and cooling device, wherein the first power device is configured to start supply of current through the holder and die so as to raise the temperature of the sheets before the punch drives in the rivet, the second power device is configured to start supply of current through the punch and die so as to supply current through and heat treat the rivet after the punch drives in the rivet, and the cooling device is connected to the punch and is configured to cool the rivet after the rivet is heat treated.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 31, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Seiji Furusako, Tohru Okada, Yasunobu Miyazaki, Fuminori Watanabe, Yoshiaki Nakazawa
  • Patent number: 10500681
    Abstract: An arc spot welding method able to give a predetermined weld bead diameter or excess metal height in a back surface weld bead of arc spot welding and able to give a welded joint excellent in both strengths of TSS and CTS and a welding apparatus for working the same are provided. Steel sheets containing carbon in 0.2 mass % or more and having sheet thicknesses “t” or more are arranged overlaid. A backing plate including a non-contact part and a contact part maintaining the back surface of the lower side steel sheet is provided. An arc generation and short-circuit conduction where the welding voltage between the welding wire and upper side steel sheet becomes 10V or less are alternately repeated so that the time period of the short-circuit conduction becomes over 30% to less than 60% per cycle to thereby weld the steel sheets.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: December 10, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinji Kodama, Seiji Furusako, Yasunobu Miyazaki
  • Patent number: 10350701
    Abstract: A spot welding method able to simply prevent liquid metal embrittlement cracks in spot welding of plated steel sheets, comprising, before spot welding, removing the plating at least in a zone including the inside of a circle centered at a scheduled location where the center of the nugget is formed and having an outer circumference of the inside of the outer edge of a weld affected zone or a zone at the mated surfaces of the steel sheets to be welded at the inside of a circle sharing a center of a scheduled location becoming the center of the nugget formed at the mated surfaces of the steel sheets and having an outer circumference of the inside of the outer edge of a weld affected zone.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 16, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yasunobu Miyazaki, Fuminori Watanabe, Chisato Wakabayashi, Kunio Hayashi, Hiroyuki Kawata, Seiji Furusako, Sho Matsui
  • Publication number: 20190030637
    Abstract: By obtaining a spot-welded joint being a spot-welded joint formed by overlapping a plurality of pieces of steel plates (1A, 1B) and performing spot welding on the steel plates, including a high-strength steel plate whose tensile strength is 750 (MPa) to 2500 (MPa), being at least one piece of steel plate out of the plurality of pieces of steel plates, in which a carbon equivalent Ceq of the high-strength steel plate is 0.20 mass % to 0.55 mass %, and ten or more of iron-based carbides in each of which a length of a longest portion is 0.1 (?m) or more exist in a square region 103 within a heat-affected zone 4 of a cross section that passes through a center of a welding mark, and is cut along a plate thickness direction of the steel plates (1A, 1B), a cross tensile strength of the spot-welded joint to be formed is improved.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Chisato WAKABAYASHI, Fuminori WATANABE, Seiji FURUSAKO, Yasunobu MIYAZAKI, Hiroyuki KAWATA, Tohru OKADA, Hideki HAMATANI