Patents by Inventor Yasunori Baba

Yasunori Baba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949097
    Abstract: In a nonaqueous electrolyte secondary battery a separator includes a porous substrate, a first filler layer, and a second filler layer. The first filler layer comprises phosphate particles having a BET specific surface area of 5 to 100 m2/g and polyvinylidene fluoride and is formed on a first surface that faces the positive electrode side of the substrate and contacts the positive electrode. The second filler comprises inorganic particles which have a melting point higher than that of the phosphate particles and is formed on at least one of a second surface that faces the negative electrode side of the substrate and the area between the substrate and the first filler layer. The content of the polyvinylidene fluoride in the first filler layer is 10 to 50 mass % and is higher in a region on the positive electrode side than in a region on the substrate side.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 2, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasunori Baba, Masanori Sugimori, Katsunori Yanagida, Nobuhiro Hirano
  • Patent number: 11942645
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The separator has a multilayer structure in which a first filler layer containing phosphate particles, a porous resin substrate, and a second filler layer containing inorganic particles having higher heat resistance than the phosphate particles are stacked in this order from the negative electrode side. The first filler layer is disposed on the porous resin substrate in such a manner that the surface of the first filler layer faces the surface of the negative electrode. The phosphate particles have a BET specific surface area in the range of 5 m2/g or more and 100 m2/g or less.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: March 26, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akihiko Takada, Masanori Sugimori, Nobuhiro Hirano, Yuki Morikawa, Yasunori Baba, Katsunori Yanagida
  • Patent number: 11817577
    Abstract: The present disclosure relates to a secondary battery module including a nonaqueous electrolyte secondary battery and an elastic body. The elastic body has a compressive elastic modulus of 5 MPa to 120 MPa. The nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode collector containing Ti as a main component and having a thickness of 1 ?m to 8 ?m. The negative electrode includes a first layer and a second layer sequentially formed from a side with the negative electrode collector. The first layer contains negative electrode active material particles containing first carbon-based active material particles with a 10% proof stress of 3 MPa or less. The second layer contains negative electrode active material particles containing second carbon-based active material particles with a 10% proof stress of 5 MPa or greater.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: November 14, 2023
    Assignees: PANASONIC HOLDINGS CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasunori Baba, Harunari Shimamura, Keisuke Ohara, Kohei Masai, Kouhei Tsuzuki, Katsunori Yanagida, Yo Kato
  • Patent number: 11695117
    Abstract: In a non-aqueous electrolyte secondary battery according to one exemplary embodiment, a separator includes a substrate, a first filler layer containing phosphate particles and formed on at least one surface of the substrate, and a second filler layer containing inorganic particles and formed on a surface of the first filler layer on the side of the at least one surface of the substrate. The phosphate particles have a BET specific surface area of 5 m2/g or more and 100 m2/g or less.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 4, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Natsumi Goto, Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Patent number: 11621458
    Abstract: In a nonaqueous electrolyte secondary battery, a separator includes a substrate, a first filler layer containing phosphate salt particles, and a second filler layer interposed between the substrate and the first filler layer and containing inorganic particles. The separator is disposed between a positive electrode and a negative electrode in such a manner that the first filler layer and the second filler layer are directed to the positive electrode side. Further, a resin layer is disposed between the positive electrode and the first filler layer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 4, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasunori Baba, Masanori Sugimori, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20230061490
    Abstract: This secondary cell module comprises anon-aqueous electrolyte secondary cell with: an electrode body in which a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode are layered; and a housing that accommodates the electrode body. The compression modulus of elasticity of the elastic body is in the range 5-120 MPa, and the positive electrode is provided with: a positive electrode current collector that contains titanium as a principal constituent and has a thickness of 1-8 ?m; and a positive electrode active material layer that is disposed on the positive electrode current collector and that includes a complex oxide containing lithium nickel, the proportion of nickel to the total quantity of metal elements other than lithium being in the range 70-100 mol %.
    Type: Application
    Filed: January 18, 2021
    Publication date: March 2, 2023
    Applicant: PANASONIC HOLDINGS CORPORATION
    Inventors: Yasunori Baba, Kouhei Tsuzuki, Harunari Shimamura, Keisuke Ohara, Katsunori Yanagida
  • Patent number: 11569493
    Abstract: A positive electrode including a positive electrode current collector, an intermediate layer disposed on the positive electrode current collector and including a conductive agent and inorganic particles, and a positive electrode mixture layer disposed on the intermediate layer and including a positive electrode active material and a hydrogen phosphate salt represented by the general formula MaHbPO4 (wherein a satisfies 1?a?2, b satisfies 1?b?2, and M includes at least one element selected from alkali metals and alkaline earth metals), the positive electrode satisfying 0.5?X?3.0, 1.0?Y?7.0, and 0.07?X/Y?3.0 wherein X is the mass ratio (mass %) of the hydrogen phosphate salt relative to the total mass of the positive electrode active material and Y is the mass ratio (mass %) of the conductive agent relative to the total mass of the intermediate layer.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 31, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takashi Ko, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano, Fumiharu Niina
  • Publication number: 20220384898
    Abstract: A technology that can preferably suppress capacity deterioration of a battery pack is provided. In one preferred mode of a spacer disclosed herein, in a state where the spacer is not disposed between the battery cells, when arbitrary two points on a straight line drawn from a position opposed to a center portion of the electrode body of each of the battery cells to a position opposed to a center portion of an end surface of the positive and negative electrodes-stacked structure are assumed to be a and b in this order in order of closer from the position, average thicknesses between the two broad width surfaces in sections each extending 1.5 cm from a corresponding one of the points a and b as a center in forward and rearward directions along the straight line are assumed to be Da and Db, a relationship Da>Db is satisfied.
    Type: Application
    Filed: May 20, 2022
    Publication date: December 1, 2022
    Inventor: Yasunori BABA
  • Patent number: 11509021
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode, wherein the separator includes an inorganic filler layer which includes a first filler layer containing phosphate salt particles and a second filler layer disposed on the first filler layer and containing inorganic particles more heat resistant than the phosphate salt particles, and the BET specific surface area of the phosphate salt particles is in the range of not less than 5 m2/g and not more than 100 m2/g.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 22, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20220263190
    Abstract: A battery pack includes a module. The module includes one or more cell pairs. Each of the one or more cell pairs includes a first cell and a second cell. The first cell includes an exterior package, an electrode assembly, and an electrode terminal. The electrode terminal includes a first main surface and a second main surface. The first main surface is oriented in a direction of the second cell. A sealing portion is formed at a peripheral edge of the exterior package. The sealing portion includes a first region, a second region, and a third region. The first region is formed between the first main surface and the resin layer. The second region is formed between the second main surface and the resin layer. The third region is formed between portions of the resin layer. The second region includes a fracture promoting portion.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 18, 2022
    Inventor: Yasunori BABA
  • Publication number: 20220131232
    Abstract: A separator for use in a non-aqueous electrolyte secondary battery according to the present invention comprises a porous substrate and a filler layer disposed upon the substrate. The filler layer includes phosphate particles and a reticulated polyvinylidene fluoride resin. The filler layer has a polyvinylidene fluoride resin content of 15 mass % to 40 mass %, inclusive. The D10 particle size (D10) of the phosphate particles on a volume basis is 0.02 ?m to 0.5 ?m, inclusive, and is smaller than the average pore size of the pores in the substrate. The BET specific surface area of the phosphate particles 30 is 5 m2/g to 100 m2/g, inclusive.
    Type: Application
    Filed: January 27, 2020
    Publication date: April 28, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20220102808
    Abstract: A separator for use in a non-aqueous electrolyte secondary battery according to the present invention comprises a porous substrate and a filler layer disposed upon the substrate. The filler layer includes phosphate particles and inorganic particles having a higher heat resistance than the phosphate particles. The D10 particle size (D10) of the phosphate particles on a volume basis is 0.02 ?m to 0.5 ?m, inclusive, and is smaller than the average pore size of the pores in the substrate. The BET specific surface area of the phosphate particles is 5 m2/g to 100 m2/g, inclusive, and is greater than the BET specific surface area of the inorganic particles. The D50 particle size (D50) of the inorganic particles on a volume basis is greater than the D50 particle size (D50) of the phosphate particles on a volume basis.
    Type: Application
    Filed: January 27, 2020
    Publication date: March 31, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20220037740
    Abstract: This non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The separator includes; a porous base material; a first filler layer which contains phosphate particles as a primary component and is arranged on one surface of the base material; and a second filler layer which is arranged on the other surface of the base material and which contains at least one type of compound selected from the group consisting of an aromatic polyamide, an aromatic polyimide and an aromatic polyamideimide. The BET specific surface area of the phosphate particles is 5-100 m2/g. The content of the aforementioned compounds in the second filler layer 32 is 15 mass % or more.
    Type: Application
    Filed: December 11, 2019
    Publication date: February 3, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20220029243
    Abstract: This non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The separator includes: a porous base material; a first filler layer which contains phosphate particles as a primary component and is arranged on one surface of the base material; and a second filler layer which is disposed between the base material and the first filler layer and which contains at least one type of compound selected from the group consisting of an aromatic polyamide, an aromatic polyimide and an aromatic polyiamideimide. The BET specific surface area of the phosphate particles is 5-100 m2/g. The content of the aforementioned compounds in the second filler layer is 15 mass % or greater.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 27, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210296639
    Abstract: The present disclosure relates to a secondary battery module including a nonaqueous electrolyte secondary battery and an elastic body. The elastic body has a compressive elastic modulus of 5 MPa to 120 MPa. The nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode collector containing Ti as a main component and having a thickness of 1 ?m to 8 ?m. The negative electrode includes a first layer and a second layer sequentially formed from a side with the negative electrode collector. The first layer contains negative electrode active material particles containing first carbon-based active material particles with a 10% proof stress of 3 MPa or less. The second layer contains negative electrode active material particles containing second carbon-based active material particles with a 10% proof stress of 5 MPa or greater.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 23, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasunori Baba, Harunari Shimamura, Keisuke Ohara, Kohei Masai, Kouhei Tsuzuki, Katsunori Yanagida, Yo Kato
  • Publication number: 20210257702
    Abstract: In a nonaqueous electrolyte secondary battery which is an example of the embodiment of the present invention, a separator comprises a porous base material, a first filler layer that includes phosphate particles and is formed on one side of the base material, and a second filler layer that includes inorganic particles which have a melting point that is higher than that of the phosphate particles and is formed on the other side of the base material. The volume-based 10% particle size (D10) of the phosphate particles is 0.02 to 0.5 ?m and is smaller than the average pore size of the base material. A portion of the phosphate particles penetrates into voids of the base material, and an average value of penetration depth of the particles is 0.1 to 2 ?m.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 19, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210249649
    Abstract: In a nonaqueous electrolyte secondary battery a separator includes a porous substrate, a first filler layer, and a second filler layer. The first filler layer comprises phosphate particles having a BET specific surface area of 5 to 100 m2/g and polyvinylidene fluoride and is formed on a first surface that faces the positive electrode side of the substrate and contacts the positive electrode. The second filler comprises inorganic particles which have a melting point higher than that of the phosphate particles and is formed on at least one of a second surface that faces the negative electrode side of the substrate and the area between the substrate and the first filler layer. The content of the polyvinylidene fluoride in the first filler layer is 10 to 50 mass % and is higher in a region on the positive electrode side than in a region on the substrate side.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 12, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasunori Baba, Masanori Sugimori, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210159498
    Abstract: In a non-aqueous electrolyte secondary battery according to one exemplary embodiment, a separator includes a substrate, a first filler layer containing phosphate particles and formed on at least one surface of the substrate, and a second filler layer containing inorganic particles and formed on a surface of the first filler layer on the side of the at least one surface of the substrate. The phosphate particles have a BET specific surface area of 5 m2/g or more and 100 m2/g or less.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 27, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Natsumi Goto, Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Patent number: 10910633
    Abstract: A nonaqueous electrolyte secondary battery in which low-crystalline carbon-covered graphite is used as negative electrode active material, wherein a cobalt-containing lithium transitional metal oxide is used for: a first positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 8 mm3/g or greater; and a second positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 5 mm3/g or less.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida, Yasunori Baba, Yuki Morikawa
  • Patent number: 10903485
    Abstract: A negative electrode for nonaqueous electrolyte secondary batteries includes a negative electrode current collector and a negative electrode mixture layer disposed on the negative electrode current collector, and the negative electrode mixture layer contains a negative electrode active material containing lithium titanate, a binder, and a (meth)acrylic acid-based polymer. The amount of the (meth)acrylic acid-based polymer in the negative electrode mixture layer is 10 mass % or less relative to the total amount of the (meth)acrylic acid-based polymer and the binder. The amount of the (meth)acrylic acid-based polymer in a portion of the negative electrode mixture layer that extends from the surface to the middle of the negative electrode mixture layer in the thickness direction (upper region) is 60 mass % or more relative to the total amount of the (meth)acrylic acid-based polymer.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: January 26, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida