Patents by Inventor Yasuo Imura

Yasuo Imura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9341969
    Abstract: Toner for electrostatic development in accordance with one aspect of the present invention contains toner base particles produced by subjecting a toner composition containing binder resin, a coloring agent, and wax to melting and kneading and thereafter pulverization and classification, the toner having a volume median particle diameter (D50) of 5.5 to 7.5 ?m, and the toner having particle size distribution in which the toner base particles include 15 to 55% by number of toner base particles of not more than 5 ?m in particle diameter, and include not more than 1.5% by number of toner particles of more than 10 ?m in particle diameter.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 17, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Toshiharu Kataoka, Yasuo Imura
  • Publication number: 20150010860
    Abstract: Toner for electrostatic development in accordance with one aspect of the present invention contains toner base particles produced by subjecting a toner composition containing binder resin, a coloring agent, and wax to melting and kneading and thereafter pulverization and classification, the toner having a volume median particle diameter (D50) of 5.5 to 7.5 ?m, and the toner having particle size distribution in which the toner base particles include 15 to 55% by number of toner base particles of not more than 5 ?m in particle diameter, and include not more than 1.5% by number of toner particles of more than 10 ?m in particle diameter.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 8, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Toshiharu Kataoka, Yasuo Imura
  • Patent number: 8760056
    Abstract: The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particle layer is provided with recesses formed in a surface thereof, the surface facing the second electrode, the recesses each having a depth smaller than a thickness of the insulating fine particle layer, and when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted though the second electrode.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 24, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kanako Hirata, Hiroyuki Hirakawa, Ayae Nagaoka, Yasuo Imura, Tadashi Iwamatsu
  • Patent number: 8616931
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 31, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ayae Nagaoka, Tadashi Iwamatsu, Hiroyuki Hirakawa, Yasuo Imura
  • Publication number: 20130257263
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: SHARP KABUSHIKI KAISHI
    Inventors: Ayae NAGAOKA, Tadashi Iwamatsu, Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8547007
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: October 1, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ayae Nagaoka, Tadashi Iwamatsu, Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8487521
    Abstract: An electron emitting element of the present invention includes: an electrode substrate; a thin-film electrode; and an electron acceleration layer sandwiched between the electrode substrate and the thin-film electrode, the electron acceleration layer including (i) conductive fine particles, (ii) insulating fine particles having an average particle diameter greater than an average particle diameter of the conductive fine particles, and (iii) a crystalline electron transport agent. The crystalline electron transport agent is crystallized in the acceleration layer.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8476818
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode, and the electron acceleration layer includes a fine particle layer containing insulating fine particles and a basic dispersant. This makes it possible to provide an electron emitting element which does not cause insulation breakdown in an insulating layer and which can be produced at a low cost.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 2, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Ayae Nagaoka, Yasuo Imura, Tadashi Iwamatsu
  • Patent number: 8421331
    Abstract: The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: April 16, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ayae Nagaoka, Hiroyuki Hirakawa, Yasuo Imura, Kanako Hirata, Tadashi Iwamatsu
  • Patent number: 8378565
    Abstract: An electron emitting element includes an electrode substrate, a thin-film electrode, and an electron acceleration layer provided between them. The electron acceleration layer includes a fine particle layer containing insulating fine particles, which is provided on a side of the electrode substrate, and a deposition of conductive fine particles, which is provided on a surface of the fine particle layer. In the electron acceleration layer, a conductive path is formed in advance, and the deposition has a physical recess which is an exit of the conductive path and which serves as an electron emitting section. Electrons are emitted via the electron emitting section. With the arrangement, it is possible to realize an electron emitting element which prevents that an electrode on an electron emission side gradually wears off along with electron emission and which can maintain an electron emission characteristic for a long period.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 19, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Ayae Nagaoka, Yasuo Imura, Tadashi Iwamatsu
  • Patent number: 8299700
    Abstract: An electron emitting element of the present invention includes an electron acceleration layer provided between an electrode substrate and a thin-film electrode, which electron acceleration layer includes (a) conductive fine particles and (b) insulating fine particles having an average particle diameter greater than that of the conductive fine particles. The electron emitting element satisfies the following relational expression: 0.3x+3.9?y?75, where x (nm) is an average particle diameter of the insulating fine particles, and y (nm) is a thickness of the thin-film electrode 3. Such a configuration allows modification of the thickness of the thin-film electrode with respect to the size of the insulating particles, thereby ensuring electrical conduction and allowing sufficient current to flow inside the element. As a result, stable emission of ballistic electrons from the thin-film electrode is possible.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 30, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tadashi Iwamatsu, Ayae Nagaoka, Hiroyuki Hirakawa, Yasuo Imura
  • Patent number: 8249487
    Abstract: According to an electron emitting element of the present invention, an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode contains (i) insulating fine particles and (ii) at least one of (a) conductive fine particles having an average particle diameter smaller than an average particle diameter of the insulating fine particles and (b) a basic dispersant. The electron acceleration layer has a surface roughness of 0.2 ?m or less in centerline average roughness (Ra). The thin-film electrode has a film thickness of 100 nm or less. As such, according to the electron emitting element of the present invention, it is possible to reduce the thickness of the thin-film electrode to an appropriate thickness. Accordingly, it is possible to increase electron emission.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 21, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasuo Imura, Hiroyuki Hirakawa, Ayae Nagaoka, Tadashi Iwamatsu
  • Patent number: 8232033
    Abstract: A toner, a developer, a two-component developer, a developing device and an image forming apparatus are provided. In the image forming apparatus, images are formed with a developer that fills a developing tank of the developing device. The developer includes the toner containing at least a binder resin, a colorant, and a release agent, the release agent having an acid value of less than 4 mgKOH/g and in which an amount of the release agent exposed on a surface of toner is 0.5% by weight or more and 2.5% by weight or less of a total amount of the toner.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: July 31, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoritaka Tsubaki, Hiroshi Onda, Yasuo Imura
  • Patent number: 8168363
    Abstract: A toner is so configured as to satisfy the following conditions: (b)/(a) is from 0.90 to 1.02, (a) is from 140 to 150 and the average value in the entire toner particles of a shape factor SF-2 of the toner particles is larger than 140, where (a) represents a shape factor SF-2 showing the degree of irregularity on the surface of toner particles having a particle size D75V or less which is a particle size at which a cumulative volume from a large particle size side in particle size distribution by volume is 75%, and (b) represents a shape factor SF-2 of toner particles having a particle size D25V or more which is a particle size at which a cumulative volume from a large particle size side in particle size distribution by volume is 25%.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 1, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasuo Imura, Hiroshi Onda, Yoritaka Tsubaki, Saori Yamada
  • Patent number: 8164247
    Abstract: The present invention provides an electron emitting element which has good energy efficiency and which is capable of controlling a value of current flowing in an electron acceleration layer and an amount of emitted electrons by adjusting a resistance value of the electron acceleration layer and an amount of generated ballistic electrons. An electron emitting element 1 includes an electron acceleration layer 4 including a fine particle layer containing insulating fine particles. In the electron emitting element 1, Ie=?·R?0.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: April 24, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Ayae Nagaoka, Yasuo Imura, Tadashi Iwamatsu
  • Publication number: 20120074874
    Abstract: The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particle layer is provided with recesses formed in a surface thereof, the surface facing the second electrode, the recesses each having a depth smaller than a thickness of the insulating fine particle layer, and when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted though the second electrode.
    Type: Application
    Filed: February 23, 2011
    Publication date: March 29, 2012
    Inventors: Kanako HIRATA, Hiroyuki HIRAKAWA, Ayae NAGAOKA, Yasuo IMURA, Tadashi IWAMATSU
  • Patent number: 8110971
    Abstract: A light emitting element of the present invention includes an electrode substrate; a thin-film electrode; and an electron acceleration layer sandwiched between the electrode substrate and the thin-film electrode. In the electron acceleration layer, as a result of a voltage applied between the electrode substrate and the thin-film electrode, electrons are accelerated so as to be turned into hot electrons. The hot electrons excite surfaces of the silicon fine particles contained in the electron acceleration layer so that the surfaces of the silicon fine particles emit light. Such a light emitting element of the present invention is a novel light emitting element, which has not been achieved by the conventional techniques. That is, the light emitting element of the present invention is able to (i) be produced by using a silicon material, which is available at low price, through a simple production method, and (ii) efficiently emit light.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 7, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Hirakawa, Yasuo Imura, Ayae Nagaoka, Tadashi Iwamatsu
  • Patent number: 8048603
    Abstract: A toner is composed of toner particles which contain at least a binder resin, a colorant, and a release agent. As to particle size distribution and particle number distribution of the toner particles, a volume average particle size of the toner particles is set to be 3.0 ?m to 6.0 ?m, and a content of 5.0 ?m or smaller toner particles is set to be 40% by number while a content of 8.0 ?m or larger toner particles is set to be less than 2% by volume. Furthermore, an amount of the release agent in toner particle surface is set to be 0.7% by weight or more and 1.8% by weight or less. And furthermore, the release agent is a petroleum-based release agent.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 1, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoritaka Tsubaki, Yasuo Imura
  • Publication number: 20110241532
    Abstract: The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 6, 2011
    Inventors: Ayae NAGAOKA, Hiroyuki Hirakawa, Yasuo Imura, Kanako Hirata, Tadashi Iwamatsu
  • Publication number: 20110236072
    Abstract: The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode; and comprising first insulating fine particles and second insulating fine particles larger than the first insulating fine particles, a surface of the insulating fine particle layer having a projection formed from the second insulating fine particles, and a second electrode formed on the insulating fine particle layer, wherein when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted from the second electrode via the projection.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Inventors: Yasuo Imura, Hiroyuki Hirakawa, Ayae Nagaoka, Kanako Hirata, Tadashi Iwamatsu