Patents by Inventor Yasuo Inoue

Yasuo Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6319805
    Abstract: A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: November 20, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Yasuo Inoue, Yasuo Yamaguchi, Tadashi Nishimura
  • Publication number: 20010041438
    Abstract: A first impurity diffusion layer forms one of source/drain regions and also forms a bit line. A first semiconductor layer, a channel semiconductor layer and a second semiconductor layer, which forms the other of source/drain regions and also forms a storage node, are disposed on the first impurity diffusion layer. A capacitor insulating film is disposed on a second conductive layer. A cell plate is disposed on a storage node with the capacitor insulating film therebetween. A capacitance of the bit line is reduced, and a dynamic random access memory thus constructed performs a high-speed operation.
    Type: Application
    Filed: July 20, 2001
    Publication date: November 15, 2001
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Shigenobu Maeda, Yasuo Inoue, Hirotada Kuriyama, Shigeto Maegawa, Kyozo Kanamoto, Toshiaki Iwamatsu
  • Patent number: 6310377
    Abstract: FS-isolated fields (10a, 10b). LOCOS-isolated fields (11c, 11d). FS-isolated fields (10e, 10f), LOCOS-isolated field (11g, 11h) and FS-isolated field (10i) are arranged in this order. Thus, a master layout can he provided, where SOI transistors having bodies to be supplied with fixed potential and those having bodies not to be supplied with fixed potential are mixed.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: October 30, 2001
    Inventors: Shigenobu Maeda, Yasuo Yamaguchi, Il Jung Kim, Yasuo Inoue, Shigeto Maegawa, Takashi Ipposhi
  • Patent number: 6303425
    Abstract: A first impurity diffusion layer forms one of source/drain regions and also forms a bit line. A first semiconductor layer, a channel semiconductor layer and a second semiconductor layer, which forms the other of source/drain regions and also forms a storage node, are disposed on the first impurity diffusion layer. A capacitor insulating film is disposed on a second conductive layer. A cell plate is disposed on a storage node with the capacitor insulating film therebetween. A capacitance of the bit line is reduced, and a dynamic random access memory thus constructed performs a high-speed operation.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: October 16, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shigenobu Maeda, Yasuo Inoue, Hirotada Kuriyama, Shigeto Maegawa, Kyozo Kanamoto, Toshiaki Iwamatsu
  • Publication number: 20010014923
    Abstract: A plurality of independent cache units and nonvolatile memory units are provided in a disk controller located between a host (central processing unit) and a magnetic disk drive. A plurality of channel units for controlling the data transfer to and from the central processing unit and a plurality of control units for controlling the data transfer to and from the magnetic disk drive are independently connected to the cache units and the nonvolatile memory units through data buses and access lines.
    Type: Application
    Filed: March 29, 2001
    Publication date: August 16, 2001
    Inventor: Yasuo Inoue
  • Patent number: 6235564
    Abstract: A method of manufacturing a MISFET includes the steps of forming a gate insulation film (2) on a semiconductor substrate (1), forming a dummy gate (3B) made of a material having an etch selectivity relative to the material of the gate insulation film (2) on the gate insulation film (2), implanting an impurity into the semiconductor substrate (1), forming an interlayer insulation film (7), made of a material having an etch selectivity relative to the material of the dummy gate (3B) on a side surface of the dummy gate (3B), etching away the dummy gate (3B), and filling a space in which the dummy gate (3B) has been present with a gate electrode material of metal. Gradually thinning the dummy gate in the step of impurity implantation allows the formation of LDD regions and the patterning of a gate electrode below a minimum patterning size limit of a photolithographic technique.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 22, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuyoshi Itoh, Yasuo Inoue, Hidekazu Oda
  • Patent number: 6214695
    Abstract: An object is to obtain a method of manufacturing semiconductor devices having trench isolation structure which accomplishes simplification of manufacturing process without deterioration of polishing uniformity. After a silicon oxide film (5) is deposited an HDP-CVD method, a polysilicon film (6) is deposited to such a thickness that the polysilicon film (6) on upper regions of raised areas is removed and the polysilicon film (6) in recessed areas remains in a first CMP process and that the polysilicon film (6) serves as a mask in a later etching process. Subsequently, the first CMP process is performed and the etching process to the silicon oxide film (5) is performed by using the polysilicon film (6) after the first CMP process as a mask to remove the silicon oxide film (5) in the upper regions of the raised areas, and a second CMP process is further performed to planarize the semiconductor substrate (1).
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: April 10, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Inoue, Yasuyoshi Itoh, Katsuyuki Horita
  • Patent number: 6198134
    Abstract: According to a semiconductor device of the present invention, a field oxide film is formed so as to cover the main surface of an SOI layer and to reach the main surface of a buried oxide film. As a result, a pMOS active region of the SOI and an nMOS active region of the SOI can be electrically isolated completely. Therefore, latchup can be prevented completely. As a result, it is possible to provide a semiconductor device using an SOI substrate which can implement high integration by eliminating reduction of the breakdown voltage between source and drain, which was a problem of a conventional SOI field effect transistor, as well as by efficiently disposing a body contact region, which hampers high integration, and a method of manufacturing the same.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: March 6, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Inoue, Tadashi Nishimura, Yasuo Yamaguchi, Toshiaki Iwamatsu
  • Patent number: 6150688
    Abstract: A first impurity diffusion layer forms one of source/drain regions and also forms a bit line. A first semiconductor layer, a channel semiconductor layer and a second semiconductor layer, which forms the other of source/drain regions and also forms a storage node, are disposed on the first impurity diffusion layer. A capacitor insulating film is disposed on a second conductive layer. A cell plate is disposed on a storage node with the capacitor insulating film therebetween. A capacitance of the bit line is reduced, and a dynamic random access memory thus constructed performs a high-speed operation.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: November 21, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shigenobu Maeda, Yasuo Inoue, Hirotada Kuriyama, Shigeto Maegawa, Kyozo Kanamoto, Toshiaki Iwamatsu
  • Patent number: 6144072
    Abstract: In a semiconductor device having an SOI structure and a method of manufacturing the same, influence by a parasitic transistor can be prevented, and no disadvantage is caused in connection with a manufacturing process. In this semiconductor device, an upper side portion of a semiconductor layer is rounded. Thereby, concentration of an electric field at the upper side portion of the semiconductor layer can be prevented. As a result, lowering of a threshold voltage of a parasitic transistor can be prevented, so that the parasitic transistor does not adversely affect subthreshold characteristics of a regular transistor. Owing to provision of a concavity of a U-shaped section, generation of etching residue can be prevented when etching a gate electrode for patterning the same. Thereby, a disadvantage is not caused in connection with the manufacturing process.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: November 7, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Yasuo Yamaguchi, Shigenobu Maeda, Shoichi Miyamoto, Akihiko Furukawa, Yasuo Inoue
  • Patent number: 6127737
    Abstract: In a semiconductor device with a trench-type element isolation structure, alignment can be performed with high accuracy without any deterioration in device performance. The surfaces of silicon oxide films (2B, 2C) embedded in trenches (10B, 10C) of an element forming region including a memory cell region (11B) and a peripheral circuit region (11C) in a semiconductor substrate (1), respectively, are almost level with the surface of the semiconductor substrate (1). On the other hand, the surface of a silicon oxide film (2A) embedded in a trench (10A) is formed lower than the surface of the semiconductor substrate (1).
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: October 3, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takashi Kuroi, Katsuyuki Horita, Maiko Sakai, Yasuo Inoue
  • Patent number: 6118154
    Abstract: An I/O protection circuit includes a P-channel MOS transistor connected between an input terminal and a power supply line, and an N-channel MOS transistor connected between the input terminal and a ground line. Gate electrodes of both the transistors are floated. The transistors may be replaced with gate diodes. Further, gate electrodes may be formed from the same layer as a gate electrode provided for field shielding.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: September 12, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Yamaguchi, Hirotoshi Sato, Yasuo Inoue, Toshiaki Iwamatsu
  • Patent number: 6096583
    Abstract: In forming an element isolating region in a silicon semiconductor layer of an SOI substrate, a silicon nitride film of a predetermined thickness is deposited over an oxide film formed on a SOI layer. The silicon nitride film is patterned in a design size of active regions, and side walls of a silicon nitride film are formed on the side surfaces of the patterned silicon nitride film. A first LOCOS process is carried out using the nitride film as an oxidation mask. A LOCOS film formed by the first LOCOS process is removed to form narrower concavities under the side walls. Then, another silicon nitride film is deposited, and is removed leaving portions thereof forming the concavities. Then, a second LOCOS process is carried out to form a LOCOS film as an element isolating region. The second LOCOS process uses the oxidation mask having the narrow cavities, so that stress at the boundary of the active region and the element isolation region is reduced, and the growth of bird's beaks can be suppressed.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: August 1, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Takashi Ipposhi, Yasuo Inoue
  • Patent number: 6051494
    Abstract: A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: April 18, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Yasuo Inoue, Yasuo Yamaguchi, Tadashi Nishimura
  • Patent number: 6030873
    Abstract: A semiconductor device which can prevent formation of a parasitic transistor and degradation in its threshold voltage is obtained. In the semiconductor device, a sidewall insulating film the width of which is increased toward its lower portion is formed on a side wall of a semiconductor layer, and a gate electrode layer is formed such that it extends on the semiconductor layer and the sidewall insulating film.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: February 29, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Yasuo Inoue
  • Patent number: 6012119
    Abstract: A storage system to be connected to a large-scale computer includes a plurality of first logical units connected to a host device, a plurality of second logical units connected to a storage device, a plurality of cache memories, and a common bus wired between these logical units and memories. The plurality of first logical units, the plurality of second logical units, and the plurality of cache memories are all made in the form of modules. The modules are detachably mounted to the common bus disposed on a back plane. The storage device can be made up of a plurality of small-size storage units arranged in an array. Thus, the storage system realizes its scalability. Since the plurality of first logical units, the plurality of second logical units, and the plurality of cache memories are duplexed and the common bus is made in the form of 2 channels, the storage system can perform degrade operation.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: January 4, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Tatuya Ninomiya, Hidefumi Masuzaki, Hiroyuki Kurosawa, Naoya Takahashi, Yasuo Inoue, Hidehiko Iwasaki, Masayuki Hoshino, Soichi Isono
  • Patent number: 6001635
    Abstract: A strain of Sphingobacterium multivorum, mOL12-4s, is disclosed which produces deaminoneuraminidase in high yields. The deaminoneuraminidase produced by mOL12-4s does not act on the ketosidic linkages of N-acetylneuraminic acid or N-glycolylneuraminic acid containing complex carbohydrates, but only on ketosidic linkages of deaminoneuraminic acid containing complex carbohydrates.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: December 14, 1999
    Assignee: Seikagaku Corporation
    Inventors: Yasuo Inoue, Sadako Inoue, Ken Kitajima
  • Patent number: 5951655
    Abstract: A plurality of independent cache units and nonvolatile memory units are provided in a disk controller located between a host (central processing unit) and a magnetic disk drive. A plurality of channel units for controlling the data transfer to and from the central processing unit and a plurality of control units for controlling the data transfer to and from the magnetic disk drive are independently connected to the cache units and the nonvolatile memory units through data buses and access lines.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: September 14, 1999
    Assignee: Hitachi, LTD.
    Inventor: Yasuo Inoue
  • Patent number: 5937284
    Abstract: Generation of parasitic transistor in active layer edge is prevented. In an NMOS region of a semiconductor layer (21) on an insulating film (20), boron ions are implanted by rotary oblique injection, using a nitride film (23) and a resist (253a) as mask. In the vicinity of a region for separating element by LOCOS method, that is, only in the edge region of the semiconductor layer (21) as the active layer of NMOS transistor, boron ions are implanted by about 3.times.10.sup.13 /cm.sup.2. After LOCOS oxidation, the impurity concentration is heightened to such a level as the boron ions may not be sucked up into the oxide film.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: August 10, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshiaki Iwamatsu, Yasuo Inoue, Tadashi Nishimura
  • Patent number: 5926703
    Abstract: It is an object to obtain a semiconductor device with the LDD structure having both operational stability and high speed and a manufacturing method thereof. A high concentration region (11) with boron of about 1.times.10.sup.18 /cm.sup.3 introduced therein is formed extending from under a channel formation region (4) to under a drain region (6) and a source region (6') in a silicon substrate (1). The high concentration region (11) is formed in the surface of the silicon substrate (1) under the channel formation region (4), and is formed at a predetermined depth from the surface of the silicon substrate (1) under the drain region (6) and the source region (6'). A low concentration region (10) is formed in the surface of the silicon substrate (1) under the drain region (6) and the source region (6').
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: July 20, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Yamaguchi, Hans-Oliver Joachim, Yasuo Inoue