Patents by Inventor Yasushi Amamiya

Yasushi Amamiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9215108
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 15, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Yasushi Amamiya
  • Publication number: 20150319019
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Application
    Filed: July 9, 2015
    Publication date: November 5, 2015
    Inventor: Yasushi Amamiya
  • Patent number: 9112740
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Grant
    Filed: January 10, 2015
    Date of Patent: August 18, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Yasushi Amamiya
  • Publication number: 20150124862
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Application
    Filed: January 10, 2015
    Publication date: May 7, 2015
    Inventor: Yasushi AMAMIYA
  • Patent number: 8953669
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Yasushi Amamiya
  • Patent number: 8861648
    Abstract: To adequately perform sampling, a receiving device that solves problems that involve an increase in circuit area and an increase in cost, is provided. A/D converter 2 samples a coherent signal that is an analog signal in synchronization with a sampling clock signal so as to convert the analog signal into a digital signal. DSP 3 demodulates the digital signal converted by A/D converter 2 and computes a phase of the sampling clock signal in which an error rate of the digital signal is the minimum based on the demodulated digital signal. Sampling clock extraction circuit 4 extracts a clock signal having a symbol rate of the coherent signal therefrom. Phase adjustment circuit 5 adjusts the phase of the clock signal extracted by sampling clock extraction circuit 4 to the phase computed by DSP 3 and generates a clock signal having the adjusted phase as the sampling clock signal.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 14, 2014
    Assignee: NEC Corporation
    Inventors: Hidemi Noguchi, Junichi Abe, Tomoyuki Yamase, Yasushi Amamiya
  • Publication number: 20130308694
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 21, 2013
    Inventor: Yasushi Amamiya
  • Patent number: 8587460
    Abstract: An A/D conversion apparatus includes first to M-th ADC connected in parallel converting an analog input signal to digital signals in response to M-phase sampling signals, a reference A/D conversion circuit that converts the analog input signal to a digital signal in response to a divided-by-(n×M+1) sampling signal; and a control unit that compares, for each period of (n×M+1) clock cycles, one of the digital signals from a corresponding one of first to M-th ADC with the digital signal from the reference ADC in a predetermined order of the first to M-th ADC, and generates a compensation control signal based on the comparison result for supply to the corresponding ADC.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: November 19, 2013
    Assignee: NEC Corporation
    Inventors: Hidemi Noguchi, Yasushi Amamiya
  • Publication number: 20120242520
    Abstract: An A/D conversion apparatus includes first to M-th ADC connected in parallel converting an analog input signal to digital signals in response to M-phase sampling signals, a reference A/D conversion circuit that converts the analog input signal to a digital signal in response to a divided-by-(n×Mf+1) sampling signal; and a control unit that compares, for each period of (n×M+1) clock cycles, one of the digital signals from a corresponding one of first to M-th ADC with the digital signal from the reference ADC in a predetermined order of the first to M-th ADC, and generates a compensation control signal based on the comparison result for supply to the corresponding ADC.
    Type: Application
    Filed: December 10, 2010
    Publication date: September 27, 2012
    Inventors: Hidemi Noguchi, Yasushi Amamiya
  • Publication number: 20120020677
    Abstract: To adequately perform sampling, a receiving device that solves problems that involve an increase in circuit area and an increase in cost, is provided. A/D converter 2 samples a coherent signal that is an analog signal in synchronization with a sampling clock signal so as to convert the analog signal into a digital signal. DSP 3 demodulates the digital signal converted by A/D converter 2 and computes a phase of the sampling clock signal in which an error rate of the digital signal is the minimum based on the demodulated digital signal. Sampling clock extraction circuit 4 extracts a clock signal having a symbol rate of the coherent signal therefrom. Phase adjustment circuit 5 adjusts the phase of the clock signal extracted by sampling clock extraction circuit 4 to the phase computed by DSP 3 and generates a clock signal having the adjusted phase as the sampling clock signal.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: NEC Corporation
    Inventors: Hidemi Noguchi, junichi Abe, Tomoyuki Yamase, Yasushi Amamiya
  • Patent number: 7671652
    Abstract: A logic circuit is provided with a first differential transistor pair (Q1, Q2) operable in response to a data signal input thereto; a current source for supplying a current to the first differential transistor pair (Q1, Q2); a first transistor (Q5) connected between a common emitter of the first differential transistor pair (Q1, Q2) and the current source, and operable in response to a clock signal input thereto; and a first potential stabilizing circuit (30a) connected to a first junction between the common emitter of the first differential transistor pair (Q1, Q2) and a collector of the first transistor (Q5), for stabilizing a potential at said first junction.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: March 2, 2010
    Assignee: NEC Corporation
    Inventor: Yasushi Amamiya
  • Patent number: 7375568
    Abstract: In the present invention, a logic circuit is provided therein with a current supply control circuit for controlling the amount of current supplied to a differential circuit. This current supply control circuit comprises a bypass path for bypassing the current around the differential circuit, a switching transistor interposed in the bypass path for opening/closing the bypass path in accordance with the signal level of a clock signal applied thereto from the outside, and a current amount control transistor for controlling the amount of current supplied to the differential circuit. The current amount control transistor adjusts the amount of current in accordance with the signal level of the clock signal.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: May 20, 2008
    Assignee: NEC Corporation
    Inventor: Yasushi Amamiya
  • Publication number: 20080030234
    Abstract: A logic circuit is provided with a first differential transistor pair (Q1, Q2) operable in response to a data signal input thereto; a current source for supplying a current to the first differential transistor pair (Q1, Q2); a first transistor (Q5) connected between a common emitter of the first differential transistor pair (Q1, Q2) and the current source, and operable in response to a clock signal input thereto; and a first potential stabilizing circuit (30a) connected to a first junction between the common emitter of the first differential transistor pair (Q1, Q2) and a collector of the first transistor (Q5), for stabilizing a potential at said first junction.
    Type: Application
    Filed: October 4, 2005
    Publication date: February 7, 2008
    Applicant: NEC CORPORATION
    Inventor: Yasushi Amamiya
  • Publication number: 20070097579
    Abstract: In the present invention, a logic circuit is provided therein with a current supply control circuit for controlling the amount of current supplied to a differential circuit. This current supply control circuit comprises a bypass path for bypassing the current around the differential circuit, a switching transistor interposed in the bypass path for opening/closing the bypass path in accordance with the signal level of a clock signal applied thereto from the outside, and a current amount control transistor for controlling the amount of current supplied to the differential circuit. The current amount control transistor adjusts the amount of current in accordance with the signal level of the clock signal.
    Type: Application
    Filed: June 16, 2004
    Publication date: May 3, 2007
    Inventor: Yasushi Amamiya
  • Patent number: 7126412
    Abstract: This preamplification circuit comprises a first circuit section, second circuit section the input signal of which is the output signal of the first circuit section, and third circuit section which is connected with the input section of the first circuit section and consumes a part of the current to be inputted to a connection point with the input section of the first circuit section and has the capacitance value of the third circuit section set at a value for suppressing a gain peaking of gain frequency characteristics which occurs in the preamplification circuit.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: October 24, 2006
    Assignee: NEC Corporation
    Inventor: Yasushi Amamiya
  • Publication number: 20050231258
    Abstract: Master circuit 1 and slave circuit 2 are designed so that the transistors constituting data-hold differential pairs are smaller in size than the transistors constituting data reading differential pairs. Further, the flip-flop circuit is adapted to operate in an operating speed range in which the currents through the data-hold differential pairs are lower than the currents through the data reading differential pairs, and the currents through the data-hold differential pairs are equal to or lower than the permissible current level of the transistors that constitute the data-hold differential pairs.
    Type: Application
    Filed: June 24, 2003
    Publication date: October 20, 2005
    Inventors: Yasuyuki Suzuki, Shigeki Wada, Yasushi Amamiya
  • Publication number: 20040174221
    Abstract: This preamplification circuit comprises a first circuit section, second circuit section the input signal of which is the output signal of the first circuit section, and third circuit section which is connected with the input section of the first circuit section and consumes a part of the current to be inputted to a connection point with the input section of the first circuit section and has the capacitance value of the third circuit section set at a value for suppressing a gain peaking of gain frequency characteristics which occurs in the preamplification circuit.
    Type: Application
    Filed: January 14, 2004
    Publication date: September 9, 2004
    Inventor: Yasushi Amamiya
  • Patent number: 6781404
    Abstract: A semiconductor integrated circuit including interconnect for connecting a current switch circuit and an emitter follower circuit and a method for producing the semiconductor integrated circuit. A matching between a characteristic impedance of the interconnect and an output impedance of the current switch circuit at its output and also an input impedance of the emitter follower circuit at its input in a predetermined frequency range is conducted to prevent an occurrence of distortion of a waveform of a data signal and a gain peaking of frequency characteristic. An impedance converter circuit can be placed at the input or output of the interconnect to match the characteristic impedance of the interconnect.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: August 24, 2004
    Assignee: NEC Corporation
    Inventors: Yasuyuki Suzuki, Kenichi Hosoya, Yasushi Amamiya
  • Publication number: 20020158659
    Abstract: A semiconductor integrated circuit including interconnect for connecting a current switch circuit and an emitter follower circuit and a method for producing the semiconductor integrated circuit. A matching between a characteristic impedance of the interconnect and an output impedance of the current switch circuit at its output and also an input impedance of the emitter follower circuit at its input in a predetermined frequency range is conducted to prevent an occurrence of distortion of a waveform of a data signal and a gain peaking of frequency characteristic. An impedance converter circuit can be placed at the input or output of the interconnect to match the characteristic impedance of the interconnect.
    Type: Application
    Filed: March 11, 2002
    Publication date: October 31, 2002
    Applicant: NEC CORPORATION
    Inventors: Yasuyuki Suzuki, Kenichi Hosoya, Yasushi Amamiya
  • Patent number: 6091599
    Abstract: An obstacle is opposed to a lower electrode of a metal-insulator-metal capacitor so as to form a gap therebetween, thereafter, insulating material is deposited so as to fill the gap and form a dielectric layer of the metal-insulator-metal capacitor; even if the deposition does not achieve a conformal step coverage, the insulating material in the gap surely isolates the lower electrode from the upper electrode, and the lower electrode is never short-circuited with the upper electrode.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: July 18, 2000
    Assignee: NEC Corporation
    Inventor: Yasushi Amamiya